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Executive Summary 

The current deliverable (i.e., D2.1 - HARTU Architectural specification and integration plan) aims to 

report the main results of tasks T2.1 and provides relevant information about Reference 

Architecture or high-level specification of the HARTU software solutions that will be provided by 

technical partners (TEK, AIMEN, ITRI and DFKI) to address pilot needs and requirements. Tasks T2.1 

covers the overall project approach on Reference Architecture model, reporting the results on 

technical drawings and software components specifications identifying key technical challenges to 

be addressed in HARTU, in terms of implementation and architecture definition.  

Considering this, the main inputs that contributed to the definition of the architecture and the 

specifications of the software are: 

• “D1.1 - Real world scenarios and metrics for validation definition”: an exploratory 

investigation of ‘requirements’ for the HARTU solution and its results, capturing both user 

level requirements and high-level requirements (i.e., functional, and non-functional) 

important to understand and extract the basic functionalities of the system. 

• “D1.2 Initial setup of real-world scenarios”: helps to extract ‘technical requirements’ 

considering the different prototypes corresponding to the 8 use cases defined by the project. 

The approach followed to complete deliverable D2.1 included: 

• The summary (ToC) and scope of the document agreed between the partners, and a detailed 

template including a description of each section and what was required to detail it, were 

disseminated to guide section leaders in collecting the required information. 

• A general overview of the manufacturing context and the reference architectures in Industry 

4.0 is presented. 

• Specifications, definition of the reference model (Reference Architecture) in terms of  

technical drawings (HARTU Blueprint), definition of the architectural layers and FBB 

specification: starting from the requirements (D1.1) and the use case descriptions as well as 

prototypes (D1.2), the HARTU approach is represented using UML diagrams. 

• Definition of the integration plan that clearly shows “when” all functional blocks within each 

layer of the HARTU architecture will be delivered for testing and validation within industrial 

environments or test labs. 

• Support for the software development plan through a CI/CD enabled tool that allows rapid 

updating of the source codes of HARTU components, as well as code quality control and 

providing a valid repository for technical documentation and problem management. 

• Follow-up activities to monitor the progress of the work through different types of meetings: 

(1) General project follow-up web meetings (every three weeks) involving all partner 

representatives; (2) WP2 conference specific meetings; (3) Overall project F2F meeting. 
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1 Introduction 

Grasp, assembly, and release planning in manufacturing environments involves optimizing the 

sequence in which a robot or automated system picks up and place objects or assembles them. It 

aims to enhance efficiency by minimizing configuration time, improving process control and 

maximizing utilisation of resources, ultimately improving the overall production process. 

In grasp and release planning, considerations include the geometry, material and weight of objects, 

their pose, as well as the robot’s capabilities. The goal is to develop a strategy that allows the robot 

to efficiently grasp items, move them to desired locations, assemble them and release them 

appropriately. This planning often integrates with larger production planning systems to streamline 

operations and enhance productivity in manufacturing settings. 

Some common characteristics to build a reliable and efficient system to support these features, also 

from a hardware optimisation point of view, involve the use of some components such as the ones 

presented below:  

• Object Recognition: Implement a robust system for recognizing and identifying objects in 

the manufacturing environment. This can involve computer vision techniques or other 

sensing techniques, e.g., barcode readers. 

• Grasping Algorithms: Develop artificial intelligence algorithms that determine the optimal 

way for a robot to grasp an object based on its shape, size, and weight. This may involve pre-

defined grasping strategies or machine learning approaches.  

• Path Planning: Integrate path planning algorithms to determine the most efficient route for 

the robot to move between different locations while carrying out manipulation tasks. 

• Robot Control Interface: Create an interface that allows seamless communication between 

the grasp and release planning system and the robot’s control system. This ensures the 

planned actions are executed accurately. 

• Sensors and Feedback: Implement sensors that provide real-time feedback on the success 

of grasping and releasing actions. This information can be used to adjust the plan if 

unexpected events arise.  

• Integration with manufacturing Workflow: Ensure that the manipulation planning system 

integrate smoothly with the broader manufacturing workflow, coordinating with other 

systems and processes. 

• Adaptability: Design the system to be adaptable to changes in the manufacturing 

environment, such as variations in object types, production volumes, or spatial 

configurations. 

• Test and Validation: Rigorously test the system under various conditions to validate its 

reliability, accuracy, and efficiency in different manufacturing scenarios. 

HARTU solution proposes to combine these elements, to create a comprehensive system that 

optimizes manipulation tasks in a manufacturing context, providing an architecture model 

(objective of this deliverable and of WP2) that will provide a structured framework for system design 

and integration.  
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HARTU implements a Reference Architecture Model which bases its foundations on the following 

principles: 

• Modularity: An architectural model allows to break down the system into modular 

components. This modularity enhances maintainability, scalability, and facilitates easier 

updates or replacements of specific functionalities, such as object recognition, grasping 

algorithms or path planning. 

• Interoperability: Define clear interfaces between different modules to ensure seamless 

communication enables easy integration with existing manufacturing systems and promotes 

interoperability with various hardware and software components. 

• Scalability: with a well-defined architecture , it becomes easier to scale the system to handle 

increased production demands or adapt to changes in the manufacturing environment. New 

modules or functionalities can be added without disrupting the entire system. 

• Flexibility and Adaptability: An architecture model provides a foundation for building 

flexible and adaptable systems. This is crucial in manufacturing, where the types of objects 

to be handled and production requirements may evolve over time. The system can be 

adjusted or extended without extensive redesign. 

• Testing and Validation: Architectural models support systematic testing at different levels, 

from individual modules to the overall system. This helps to ensure that each component 

functions correctly and that the integrated system meets performance and reliability 

requirements. 

• Data flow optimization: The architecture model aids in optimizing the flow of data between 

different components. Efficient data exchange is crucial for real-time decision-making in 

grasp, assembly, and release planning, especially when coordinating with other 

manufacturing processes. 

• Documentation: An architecture model serves as a comprehensive documentation tool, 

providing a clear understanding of the system’s structure and functionality. This 

documentation is invaluable for maintenance, troubleshooting, and future enhancements. 

In summary, an architecture model provides a strategic framework for designing, implementing, 

and maintaining a robust grasp, assembly, and release planning system in manufacturing, offering 

benefits respecting the above principles. These principles are satisfied through the approach and 

methodology used for the definition and specification of the HARTU reference architecture, from its 

implementation by observing this methodology, while WP2 will gather structured and suitable tool 

for continuous deployment and testing of the software produced, that will improve system solution 

in the immediate response to changes due to changed conditions in the acceptance of the system's 

functionality by end users. The HARTU framework will be able to respond quickly to these changes, 

as it is supported by an architectural model that foresees and plans the management of change 

requests, adapts continuously, and provides valid support for the active understanding of the 

system. 

Furthermore, HARTU Reference Architecture efficiently integrates artificial intelligence 

components, and Robotic Operating System (i.e., ROS and ROS2) that significantly enhance grasp, 

assembly and release planning systems in manufacturing (in addition to the characteristics to build 

a reliable and efficient system), (1) enhancing adaptive decisions making based on the real-time 
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feedback from sensors,  (2) continuous learning from data generated during operations allowing 

system improvement over time, enhancing the collaboration between robots and human workers, 

ensuring safe and efficient interaction, capturing suitable requirements from them (T1.3), (3) 

integrating artificial intelligence, manufacturers can achieve a higher level of automation, efficiency, 

and adaptability, ultimately improving the overall productivity and competitiveness of their 

manufacturing processes, (4) adopting middleware provided by ROS2 can improve communication 

between different components of a robotic system, to facilitate the object recognition, 

manipulation planning and control, (5) integrating simulation tools, like UNITY and MuJoCo, allow 

developers to simulate and test their grasp, assembly and release planning algorithms in a virtual 

environment, using production data, enhancing testing, refining, and software validation before 

deploying it to a physical robot. 

1.1 Scope of this deliverable 

The current deliverable (i.e., D2.1: HARTU Architectural specification and integration plan) aims to 

report on the results of tasks T2.1 about the definition of HARTU Reference Architecture (RA). Task 

T2.1 also provides an integration plan for software identifying for each block of the architecture 

alpha-beta-final release; it’s to show the progress of the software solution during the 

implementation phase, in order to provide a clear picture about delivery date of each software 

solution to the project end-users.  

The results of D2.1 will serve as input for technical results providers in WP2, WP3 and WP4 (i.e. 

AIMEN, TEK, DFKI, ITRI) with the supervision of ENG, during the implementation phase of HARTU 

solution. 

1.2 Relationship with other tasks 

The requirements collection activities in WP1 considered inputs coming from (1) the DoA; (2) user, 

functional and non-functional requirements collected during the interview with end-user in T1.1 

(D1.1), (3) initial setup scenarios definitions in T1.2 (D1.2), (4) technical requirements coming from 

software components analysis in T2.1, T2.3 and T2.4. By processing the main inputs, this task will 

provide WP1, WP2, WP3 and WP4 with the design of the architecture, the specification of the 

functional blocks that compose it, the integration plan and the tool for integration and continuous 

delivery, as well as providing a technical integration plan for the software components and main 

system interfaces as output for the definition of timelines and software releases needed for 

organizing the integration activities of the results in the experimental scenarios and evaluation in 

the Tasks T1.5 and T1.6. These specifications will be formalized in this deliverable, which will be 

used by the technical WPs as a basis for development, as shown in Figure 1: 
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Figure 1: Relationships with other WPs and Tasks 

1.3 Structure of the document 

D2.1 is divided in six main parts involving: 

• Introduction: This section Identifies the tasks of the project related to the deliverable 

including information on objectives as well as a short description of the relationship of the 

current deliverable with the results of other tasks and work-packages. 

• Methodology: This section describes the approach followed in tasks T2.1 to complete the 

deliverable D2.1. 

• Context: A State of The Art Analysis of other initiatives and existing solutions relevant to the 

HARTU architecture design, complemented by a description on how HARTU can be aligned 

or supported by them. 

• HARTU RA Specifications: This is the core part of the document including relevant 

information from each module composing the HARTU overall solution. This description 

includes the technical drawing (holistic view) and the specifications of the blocks (modules) 

representing an external view of the system derived from the requirements defined in WP1; 

the identification of the HARTU Architecture Model providing the solution to be adopted in 

HARTU in terms of Functional Building Blocks; the description of main business interfaces to 

be put in place in the final solution to realize a coherent system from the individual modules; 

the detailed specification of FBB in terms of system interfaces and the overall Functional and 

Modular architecture of the HARTU project. 

• HARTU Integration Plan: that is, the description of the integration plan of the software 

components that form the system, the date on which these will be available in the different 

versions, and finally the CI/CD solution that will be implemented for Source Code 

Management and for deployment and continuous testing of the software as it is developed 

by the partners involved in the process. 

• Conclusion: This section provides summarised information on the HARTU Reference 

Architecture to pave the way to the technical developments in WP2, WP3 and WP4. 
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2 Methodology 

This section presents the architecture approaches used in the definition and specification of HARTU 
Reference Architecture (RA).  These methodological approaches, allow to address separately the 
concerns of the various stakeholders of the HARTU project, mainly technical partners, and business 
partners (Pilots), and to handle separately the functional and non-functional requirements. The 
HARTU RA is designed using an abstraction of the business logic of the services that make up the 
solution, using a system decomposition based on functional blocks. 

The HARTU RA deals with the design and implementation of the high-level structure of new 
manufacturing systems developing the best technical solution and methodologies to increase 
flexibility, reconfigurability, and production line efficiency with innovative robotic components. 

This document relies on the assembly of a certain number of architectural components in some 
well-chosen forms to satisfy the major functionality and non-functional requirements of the system. 

Following this approach this document provides an abstraction, decomposition, and composition of 
several architecture layers that provide a holistic view of the system, how the solution is built, the 
main actors and technologies involved. 

Also, this deliverable considers WP1 requirements and the use cases described in D1.1 to develop 
the HARTU architecture. In particular, the architecture of the project satisfies several of the 
functional and non-functional requirements of the project. Some of the key requirements driving 
the development of the architecture are those relating to standards compliance (e.g., Robot 
Operating System version 21), implementation of new manipulation planning and control, and the 
use of simulation environments. Note however that the HARTU architecture has considered high-
level requirements of D1.1, rather than the low-level technical ones that will be further analysed in 
the scope of WP2, WP3 and WP4. This is because the presented HARTU architecture focuses on 
high-level decisions with system wide impact on HARTU based systems, rather than on low-level 
technical details that will be elaborated as part of implementation. 

In addition, the objectives of the HARTU RA can be decomposed as in the following: 

• To develop a reference architecture for the implementation of HARTU software solution 

• To define the logical structure of the infrastructure components in the HARTU stack. 

• To define the functional components implementing each infrastructure component to 
support the evolving adaptive assembly system concept. 

• To address functional and non-functional requirements, clearly presenting to the HARTU end 
user and through a technical drawing the functional block that meets the requirements. 

• In order to achieve the above objectives, it should be noted that the different levels of 
description of an architecture could include both the design and the detailed description of 
the implementation levels. 

2.1 Layered Architecture 

The layered architecture approach relies on organizing a system into different hierarchical layers, 

each responsible for specific functions. This helps to enhance modularity, maintainability, and 

 
1 https://docs.ros.org/en/rolling/index.html 
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scalability by isolating different aspect of the system itself. Each layer in the architecture shows how 

the system answers to the users that interact with it in the frontend layer, business logic or 

component that satisfy the frontend request, data storage or where the data exchanged in the 

system is stored and maintained, and each handling specific responsibilities within the overall 

architecture. 

The topmost layer that interacts directly with the end users or external systems is responsible for 

user interfaces, input validation, and frontend logic. Its primary goal is to present information to 

users in a comprehensible format. The frontend layer, interact with the Application (or Business 

Layer) and focuses on core system functionalities. It processes and manages data, implementing 

business rules and orchestrates communication between different parts of the system. This layer is 

independent of the user interface, making it easier to modify or update business rules without 

affecting the frontend layer. The data, however, is managed in the information layer, where it is 

possible to find services and/or supports to store data, or simply placeholders to the data model 

that describes data and metadata models, i.e., the container. 

The main advantages of using this approach, are: 

• Modularity: each layer is modular, making it easier to understand, maintain and update 

specific components without affecting the entire system. 

• Scalability: layers can be scaled independently, scaling for instance the business logic 

without touching the frontend or information layers. 

• Interchangeability:  layers can be replaced or updated without affecting the other layers, 

as long as the interfaces between layers remain consistent.  

The layered approach enhances the separation of interests, making it easier to manage and evolve 

complex systems over time, and for this reason it remains a valid support and definition and 

specification mechanism for complex software systems such as those in the robotic manufacturing 

context. 

2.2 Functional Building Blocks Specification 

To address the intricacies of complex problems, the Functional Building Blocks (FBB)2 approach 

emerges as a structured and systematic methodology, facilitating the decomposition of problems 

into manageable components. Based on the principles of modularity and abstraction, this approach 

provides a robust framework for the design and construction of systems that possess attributes of 

flexibility, scalability, and maintainability. 

The core principle of the FBB approach revolves around the division of a problem or system into 

discrete modules, commonly referred to as building blocks. These building blocks are meticulously 

crafted to encapsulate specific functions or operations that contribute to the overall functionality 

of the system. Through the decomposition of a problem into these coherent and manageable units, 

the FBB approach facilitates a comprehensive understanding of the system's requirements, while 

fostering effective collaboration among team members. 

 
2 https://pubs.opengroup.org/architecture/togaf8-doc/arch/chap32.html 



D2.1 – HARTU Architectural specification and integration plan 

 
 

 15 
 

One notable advantage of the FBB approach lies in its ability to facilitate reusability and extensibility. 

Each building block is carefully designed to be modular and independent, characterized by well-

defined interfaces that facilitate seamless interaction and communication with other blocks. This 

modular nature streamlines the development process and enables the reuse of existing building 

blocks in diverse systems or contexts, thereby conserving time and effort. 

Furthermore, the FBB approach fosters abstraction as a fundamental principle. Abstraction involves 

concealing the internal complexities of a building block and exposing only the pertinent details to 

the external environment. By presenting a high-level view of the building block's functionality, this 

abstraction layer allows other system components to interact with it without needing an 

understanding of its intricate internal mechanisms. Consequently, modifications made to a specific 

building block are less likely to have an overarching impact on the entire system, enhancing 

maintainability and mitigating the risk of unintended consequences. 

The FBB approach also has inherent scalability, an attribute derived from its modular design. By 

conceptualizing a system through the lens of building blocks, the addition or removal of a 

functionality becomes effortless. As system requirements evolve or expand, new building blocks can 

be created and seamlessly integrated, or existing blocks can be modified or replaced. This intrinsic 

flexibility ensures that the system can adapt and expand without major disruptions or extensive 

overhauls. 

3 The Context 

HARTU project’s developments are guided by the requirements identified with the support of the 5 

industrial companies and the expertise of the technology partners. Due to the wide variety of 

applications to be implemented and the aim to impact the development process of future 

applications, HARTU proposes and open reference architecture that can be shared and adopted for 

third parties. 

3.1  Industry 4.0 reference architectures 

Several government institutions and business organizations have considered the Industry 4.0 (I4.0) 

paradigm as a key factor in their industrial development strategies. This has given rise to initiatives 

such as Plattform Industrie 4.0 3in Germany and Industry IoT Consortium 4 (IIC) in the USA, to name 

the most cited ones. Their common denominator is a coordinated effort between government, 

industry and academia to support innovation in manufacturing processes, based on the total 

interconnection between different manufacturing assets in a technological context of big data 

capturing and processing. In this sense, all initiatives are working on the standardization of their 

reference architectures (e.g., RAMI 4.0 in the case of Plattform Industrie 4.0 and IIRA in the case of 

IIC) and on the analysis of their confluence. However, standardization and correlation of reference 

architectures is often a slow process.  

 
3 https://www.plattform-i40.de/IP/Navigation/EN/Home/home.html  
4 https://www.iiconsortium.org/  

https://www.plattform-i40.de/IP/Navigation/EN/Home/home.html
https://www.iiconsortium.org/
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RAMI [1] presents a cubic model that provides a framework for a common understanding among 

the entities of an I4.0 System with respect to three axes:  

Layers axis: It describes the six functional levels into which manufacturing systems for Industry 4.0 

can be divided. In each of these layers, service definitions abstractly describe the functionality 

provided to a layer N by a layer N-1.  

• Business layer: It orchestrates the high-level services to determine the status of the 

processes at a factory level. 

• Functional layer: It provides a definition of the high-level services offered by an asset and 

manages their access remotely. 

• Information layer: It acquires, processes and adapts the data from assets while ensuring its 

integrity and persistence. 

• Communication layer: It establishes architectural styles, message patterns and data formats 

to ensure interoperability. 

• Integration layer: It offers low-level services that enable access to the data and 

functionalities of the asset. 

• Asset layer: It represents the physical or logical entities with value for a company, including 

human beings.  

Life Cycle Value Stream axis: Supported by IEC 62890, it describes the operational status of the 

product, differentiating between product type and product instance: 

• Product type: A product in development stage constitutes a product type. 

• Product instance: A manufactured product constitutes an instance of a product type.  

Hierarchy Levels axis: It adopts some of the factory hierarchy levels of ISA 95 and ISA 88 (such as 

Enterprise, Work centres, Stations and Control device), while adding additional levels to make the 

factory hierarchy consistent with Industry 4.0: 

• Connected world: It represents a group of companies collaborating above the Enterprise 

level. 

• Field device: It represents devices that are directly involved in the manufacturing process 

below the Control device level. 

• Product: It represents the product in the factory hierarchy.  

Together with this cubic model, RAMI 4.0 also introduces the I4.0 Component as a participant of a 

manufacturing system [2]. An I4.0 Component consists of an asset (physical part) and an Asset 

Administration Shell or AAS (virtual part). I4.0 Components are service-oriented: the AAS provides 

the asset an interface through which service requests from other I4.0 Components are channelled. 

Within the AAS, service requests are handled by a Component Manager that manages the AAS 

submodels (also called Manifest), made up by the set of properties that describe the data and 

functionalities of the asset.  

Services provided by a I4.0 component can be grouped into two categories as seen Figure 2:  
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• Submodel Services: They provide access to the information submodels of an I4.0 component 

without interacting with the asset.  

• Asset Related Services: They involve an interaction with the asset to execute some 

functionality or operation, or to manage its state. 

Services provided by I4.0 Components can be combined to compose manufacturing applications 

that are offered to other components, resulting in Application Relevant Services [2]. 

 
Figure 2. Component representing a Robot-asset and its Asset 

3.2  Background on ROS2 (Robot Operating System) 

ROS2 is a middleware, a software system dedicated to handling connections and data exchange 

between users and applications. It is based on an anonymous publish/subscribe mechanism that 

allows for message passing between different processes. ROS2 includes a set of software libraries 

and tools to build robot applications. It contains a great number of drivers, state-of-the-art 

algorithms, and developer tools. 

Among these key tools, the ROS core includes tools that can be helpful to visualize data, navigate 

package structures, and create scripts that automate complex configurations. Examples include 

“rviz”, a 3D visualizer used to present robots, sensor data, and their environment. Furthermore, 

additional packages are available for SLAM (Simultaneous Localization and Mapping), navigation, 

perception, and simulation, to name a few. 

ROS2 handles a network of nodes in a system and the connections that allow them to communicate, 

this is known as the ROS2 graph. A general overview of the architecture behind ROS2 is shown in 

the following image: 
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Figure 3: ROS 2 Architecture Overview 

Overall, the main improvements from ROS to ROS2 include an improved communication stack with 

real-time data distribution service (DDS) protocol, logging improvements, the ability to configure 

Quality of Service in an easier fashion, provide improvements to the command-line interface, 

improved support for continuous integration and deployment, among others. ROS2 provides a more 

robust, flexible, and powerful solution for robotic applications. 

A brief introduction of nodes, messages, services, actions, command line interface, and launch tools 

in ROS2 follow in this section of the document. 

3.2.1 ROS2 Nodes 

ROS2 nodes are the basic computation unit of the network. Each node represents a single process 

running in the system. They use the ROS2 Client Library to communicate with other nodes. ROS2 

applications typically communicate through interfaces of one of three types: messages, services, or 

actions.  Nodes can send and receive messages via buses known as topics, which can be user-defined 

and include anything from sensor data to actuator commands. On the other hand, services and 

actions provide a single result for each call.  

These nodes also possess a shared database that allows for communal access to static and dynamic 

information. This is known as a parameter server.  

3.2.2 ROS2 Messages 

Nodes can publish messages to named topics to transmit data to other nodes or subscribe to topics 

to receive messages from other nodes. For example, a node can be focused on reading and handling 
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information from a camera and publish an image message on a specific topic so the image can be 

accessed by the whole system. Messages are written in the ROS Message Description Language 

(.msg) and are used to describe how the data being sent is structured. Messages can contain many 

different types of data, from simple types like integers to more complicated ones such as images 

and custom messages. 

 

Figure 4: Service communication for nodes in the ROS graph 

3.2.3 ROS2 Services 

Nodes can also act as services. Services handle a specific computation or data on request from 

another node. These are optimized for handling quick computations since the node requesting is 

usually on hold until it receives a response from the service request. A node that wants to request 

a computation or data (client) sends a request message to another node (server), which fulfills the 

request and sends a response to the client. 

A service is defined by a service server and a service client. The service server's external behavior is 

defined by “.srv” files in the “srv/” directory, where the input and output of the service is defined. 

Service clients are the nodes that send the input information and request an output.  

3.2.4 ROS2 Actions 

If there is a need for handling longer computation requests, ROS2 provides a solution: actions. 

Actions can send feedback on the status of the long-running computation and can be interrupted. 

Actions are defined by “.action” files in the “action/” directory. 
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Figure 5: ROS2 Action 

3.2.5 ROS2 Command Line Interface 

ROS2 also provides a set of commands for introspecting and working with nodes, topics, services, 

and more. These commands are accessible through the main command “ros2”. A list of some 

commands is shown in the following table: 

Table 1. ROS2 Commands 

Command Description 

action Introspect/interact with ROS2 actions. 

bag Record/play a rosbag. 

launch Run/introspect a launch file. 

node Introspect ROS2 nodes. 

param Introspect/configure parameters on a node. 

run Run ROS2 nodes. 

service Introspect/call ROS2 services. 

topic Introspect/publish ROS2 topics. 

 

The use of these commands should be done in the following way: 

ros2 <command> <verb> <flags> 

Where “<command>” can be one of those listed in the previous table, “<verb>” further specifies the 

action of the command (list, echo, pub), and “<flags>” help define the behavior of the command 

(e.g., list of topics or loop flag for rosbags). For example, the topic command can be used to display 

all the existing topics: 

ros2 topic list 

For more information on the command line interface, the “--help” flag can be used in different 

scenarios: 

ros2 –help 
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ros2 <command> --help 

ros2 <command> <verb> --help 

ROS2 Launch 

Since a ROS2 system typically consists of many nodes running across different processes, the launch 

system provides a way to automate the running of many nodes with a single command. This system 

utilizes a “.launch” file, which can be written in Python, XML, or YAML, to describe the configuration 

of the system. This configuration may include instructions to use the ROS2 commands, run 

programs, and define arguments. These instructions can then be run using the “ros2 launch” 

command. 

4 HARTU Adaptive Platform for Robotic Orchestration 

(APRO)  

HARTU Reference Architecture (RA) is designed as multi-layered architecture and built on top of 

functional building blocks methodology. Inspired by the requirements collected in WP1, the 

technical design of the architecture was also started in WP2 with the collaboration of the main 

technological partners involved (i.e., ENG, TEK, AIMEN, DFKI, ITRI). Figure 6 shows the final version 

of the HARTU RA, obtained after several iterations with the partners involved, through 

brainstorming meetings and resolution sessions which allowed the technical group to release 

substantial parts of the architecture: 
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Figure 6: HARTU Reference Architecture (Latest version) 
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Each layer in the architecture communicates with the adjacent through well-defined interfaces or 

APIs, enabling loose coupling and facilitating independent development and testing of each layer. 

This separation of concerns allows for easier maintenance, scalability, and the ability to replace or 

modify individual layers without affecting the entire system. Interoperability between the layers will 

be guaranteed by the interfaces offered by the ROS2 in HARTU, its architecture being based on this 

technology; however, any other interaction mechanisms (standard protocols, third-party libraries) 

are not excluded should there be a need to solve specific integration problems using custom 

solutions. Furthermore, to address complex problems in software solution design, the Functional 

Building Blocks (FBB) approach was applied to better specify the technical structure of HARTU RA 

layers (see section 2.2). 

Valid graphics and physic engine tools (e.g., Gazebo5, Mujoco6, Unity7, etc.) will be provided to test 

machine learning or deep learning models to build software applications without compromising real 

data (e.g., production data). Functional building blocks will implement added value services able to 

cover all HARTU use cases and meet the needs of the end user.  

The HARTU RA is composed of the following layers: 

• Frontend Layer 

• Application Layer 

• Information Layer   

• Middleware Layer 

• Physical Layer 

Some common features between the layers can be summarized as follow: 

• Each layer can include one or more functional (e.g., Perception in the Application Layer) or 

technological block (HARTU UI Block in the Frontend Layer). 

• Each main block can include sub-blocks (and so on), which extend the main one (not in the 

current version of the HARTU RA). 

• Each block (and sub-block) can contain components/modules/services/software artifacts 

and technologies. Components (generic term to express the list of solutions) expose a set of 

interfaces (APIs) that allows them to communicate with other blocks (in the same layer) or 

externally with other layers of the architecture. Internally, each component can implement 

interfaces that perform operations useful for carrying out activities (e.g., tasks, operations, 

etc.) common to the functional or technological area to which it belongs. 

4.1 Frontend Layer 

The Frontend Layer is about Human-to-Machine (H2M) interaction with software systems exposing 

high-level functionality or interfaces (UI) for HARTU operators and system integrators. GUI and 

simulation tools are the main components of this layer, which provide visual representations of 

information about the process to be monitored/controlled and business functions that will provide 

 
5 https://gazebosim.org/home 
6 https://mujoco.org/ 
7 https://unity.com/ 
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outputs to the end user. Simulation functionality to design new physical solutions in realistic 

environments with synthetic or real-time data flows will be also provided. HARTU end users will 

interact with this layer using dashboards (graphical user interfaces) to perform operations such as 

to learn new assembly skills or start the execution of an application. 

The main interaction based on ROS 2 communication protocols (mostly) will be with the Application 

layer, which will provide the highest-level business functions of the architecture (detail below). 

4.2 Application Layer 

The Application Layer contains interfaces (APIs) and provides services for frontend application 

processes; transmission forward the requests to the level of presentation (Frontend Layer), while 

receiving them. Communication with the ROS2 layer typically occurs via interfaces of the following 

three types: 

• messages (topics), 

• services 

• and actions. 

Topics are used for data streams (sensor data, robot state), services to execute remote procedures 

fast, while actions are used for any discrete behaviour that moves a robot or runs for a longer time 

but provides feedback during execution. Communication between the Frontend and Application 

layers in HARTU will be provided by ROS2, although other communication protocols can be used if 

there is a real need. 

The core components for robotic interaction will be exposed in this layer; heterogeneity in the 

technologies that express the functional blocks in this layer will represent one of the main 

characteristics of this layer that will host ROS 2 compliant applications, but also components 

developed ah-hoc in any programming language to meet a specific end user need. However, this 

level supports the following functional application areas of robotics applications: 

• Perception, 

• Robot Application Planning & Control 

• and Grasp/Release Planning. 

The Perception block will contain components and technologies capable of providing functions to 

support operators in perception (through the Frontend layer tools) of static and dynamic objects to 

build a reliable representation and detailed robot environment using computer vision and machine 

learning techniques. The perception block in a robot is therefore responsible for object detection, 

segmentation, and tracking. The component APIs of this block will interact at a lower level mainly 

with the Grasp/Release Planning block components, and internally with the components of the 

same block (e.g., the Image Segmentation component will identify and separate parts to be handled 

by the robotic system within an image provided by the Image Acquisition component). 

The Robot Application Planning & Control block will provide components for the execution of tasks, 

such as controlling the trajectory of the robot (Planning), and position movement (Control). In all 

robotic applications, completing a generic task requires execution of a specific action prescribed to 
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the robot. The correct execution of this action is entrusted to the Robot Application Planning & 

Control Block, that should take care of it with commands consistent with the desired action. 

The Grasp/Release Planning block contains components and services for grasp detection and 

planning. The technologies of this block are particularly important because allow a robot to support 

humans in daily work.   

4.3 Information Layer 

The Information Layer encompasses dedicated data stores to persist information related to various 

aspects of the system. This support will be of different nature, and will manage heterogeneous 

information, serving the applications and services in the Application layer that will need to consume 

data (e.g., analytics data, time series etc), or instantiate a specific data model to train AI algorithms, 

or model information for portability of applications between different execution environments. 

Furthermore, The HARTU reference models are also included in this layer (e.g., ONNX, SAM, DMP, 

GMM, etc.) like “placeholders” to make understandable the plethora of modelling solutions that the 

project will make available for system integrators. 

4.4 Middleware Layer 

The Middleware Layer is an abstraction software between an operating system and the applications 

running on it. It essentially functions as a hidden translation layer, allowing communication between 

the Application layer and Operating System libraries regardless of their implementation. It 

effectively abstracts the high-level functions of the HARTU architecture from the dependency of the 

main OS like Linux, Windows, or Mac. For ROS 2 the decision was made to build it on top of an 

existing middleware solution (i.e., DDS or Data Distribution Service). The main advantage of this 

approach is that ROS 2 can leverage an existing, well-developed implementation of that standard. 

There are many different implementations available, and each has advantages and disadvantages 

in terms of supported platforms, programming languages, performance characteristics, memory 

space, dependencies, and licenses. To abstract from the specifics of these APIs, an abstract interface 

has been introduced that can be implemented for different DDS implementations. This middleware 

interface defines the API between ROS 2 client library and any specific implementation. Each 

interface implementation will usually be a thin adapter that maps the generic middleware interface 

to the middleware implementation-specific API. 

The HARTU Client Library block contains a series of AI and non-AI libraries, ROS 2 compliant or simply 

third-party libraries, which will provide functionality and algorithms to the Application layer blocks. 

AI algorithms use machine learning, deep learning and so on techniques to train training models, 

therefore, to make accurate predictions. 

4.5 Physical Layer 

The Physical Layer represents the lowest layer of the architecture where the partners/end-user 

facilities (laboratories, shop floor, etc.) are located. The layer also defines the physical components 

of the system, including production equipment, product parts, sensors, and machinery (e.g., robots). 

Here, the data relating to the assets will be produced in real-time which will be used to feed the 

decision-making process, the AI algorithms, and the business functions in the Application layer.  
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Finally, given the high flexibility of the architectural design the software deployment strategy in the 

HARTU pilots will be based on a modular basis, using docker containerization technology, while 

YAML file8 will be distributed to provision each installation using a configuration file. Furthermore, 

pilots will be free to choose additional technologies for container orchestration and management 

(e.g., Kubernetes) if they deem it necessary to automate or simply better manage workloads. 

4.6 FBB Specification 

This section describes all the functional building blocks (FBBs) that compose the HARTU RA, going 

into detail about each block: 

• Each block and sub-blocks are represented by a unique identifier. These identifiers are used 

in the traceability matrix to reference a block with a list of requirements as shown in ¡Error! 

No se encuentra el origen de la referencia., in ¡Error! No se encuentra el origen de la 

referencia. where general integration status of each block is presented to show when 

different releases of the block and its components will be released (during the project 

lifetime). 

• Each block is described in detail in the following sections, reporting a component diagram to 

depict the internal composition (list of components and main interaction among them), the 

general description of the block (the aim and purpose inside HARTU RA), and main interfaces 

or features to communicate with other components.  

• Each block could be implemented by different partners that collaborate to deliver new 

added-value services for HARTU and users. 

The table below contains the list of the main FBBs defined for the HARTU RA, with an associated 

unique code (ID), the name and a brief description of the module. Each identifier is formed as 

follows: 

• MOD: it is common to all blocks and indicates MODULE, to denote the nature not of a single 

component but of a set of components and services. 

• FL, AL, IL, ML is related to the layer to which the block belongs, i.e., where it’s placed within 

the HARTU RA. 

• The last letters are an abbreviation of the module name. 

Table 2. Main Functional Building Blocks (FBB) for HARTU Reference Architecture 

ID FBB Name Description 

MOD.FL.UIT HARTU UI Tools Front-end components 

MOD.AL.PER Perception Back-end perception components  

MOD.AL.APC Robot Application Planning & Control Back-end robot control & planning 

MOD.AL.GRP Grasp/Release Planning Back-end Grasp/Release planning 
components 

MOD.IL.DEM Data & Models Data store & data models 

MOD.ML.CLL HARTU Client Library Back-end Linux OS/ROS2 library 
components 

 
8 https://yaml.org/ 
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The HARTU RA primarily supports the functional requirements—what the system should provide in 

terms of services to its users. The system is decomposed into a set of key abstractions, taken 

(mostly) from the problem domain as stated in previous Section 2.2. This decomposition is not only 

for the sake of functional analysis, but also serves to identify common mechanisms and design 

elements across the various parts of the system to be further details in the sub-sections of section 

4.6. 

These sub-sections describe the HARTU functional blocks, by providing a description of each 

component of the HARTU solution in more technical detail. 

4.6.1 Frontend Layer FBBs Specification 

The Frontend Layer contains one main functional block or HARTU UI Tools (MOD.FL.UIT) and it is 

split into two main components (with a common interface): 

• The Builder: used for the configuration of the application configuration. 

• The Control: used at application runtime. 

4.6.1.1 AppManager 

The AppManager (Builder) offers the GUI and the functions to define an application: 

• GUI. Based on QT, offers the GUI to create the application, control it and access to the 

simulation environment, which is used to create the segment and local grasp models. 

• It takes as input various data specific for the application and the part to be handled: part 

CAD (if available), gripper CAD, robot model, part delivery (box, on a table), final position, 

etc. 

• It generates a file with the configuration data and the models for segmentation and local 

grasping. 

 
Figure 7: HARTU FBB – Frontend Layer – AppManager (builder) Component Diagram  
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The AppManager (Control), using the same GUI allows the user to launch the application and 

monitor and control the process: 

• It takes as input the configuration file generated with the Builder and uses the data of other 

components that it calls at execution time. 

• The result is a set of commands to the robot (movements, grasping tool related operations) 

as well as to other external devices (e.g., machines). 

 

 

Figure 8: HARTU FBB – Frontend Layer – AppManager (Control) Component Diagram 

 

4.6.1.2 SimEnv 

The SimEnv is composed for a set of components used to create three of the models needed in the 

process. Internally it uses two third party simulation tools, UNITY (commercial) and MuJoCo (Open 

Source). 

• It is accessed through the AppManager (Builder) and uses as input the information of the 

part, the gripper and the environment (boxes, robot, etc.) 

• It supports three of the components in the HARTU RA: 

o SegmentModeller. It requests SyntheticImageDatasetCreator to create a database 

of synthetic images using the CAD of the part and various parameters to randomize 

the scene in Unity. 

The SegmentModeller uses YOLOv5 to generate the Segment Model of the part. 

o LocalGraspModeller. It estimates an initial list of possible grasping candidates based 

on several criteria and uses LocalGraspPointTester to validate the quality of these 

candidates. To do so, it requests MuJoCo to simulate each candidate's grasping 

operation and calculates the operation's metrics. The result is the final Model (list) 

of best grasping point candidates. 
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o GlobalGraspModeller. It trains a neural network to determine which is the best 

candidate in a cluttered scene (GlobalGraspModel). The GlobalGraspModeller 

generates a scene with N randomly arranged objects, it segments the image and 

selects one of the possible grasping points. It then requests the 

GlobalGraspPolicyTester to execute the grasp operation (in MuJoCo), which returns 

the quality metric of the grasp operation and a vector with some features of the 

scene. 

.  
Figure 9: HARTU FBB – Frontend Layer – SimEnv Component Diagram 

 

4.6.2 Application Layer FBBs specification 

The Applications Layer contains three functional blocks: 

• Perception (MOD.AL.PER) 

• Robot Application, Planning & Controls (MOD.AL.APC) 

• Grasp Release Planning (MOD.AL.GRP) 

Each of these blocks contains several components which are described below, together with the 

main interfaces (communication internal to the component, i.e., with other internal components) 

both internal and external (communication between the blocks of the Application layer or with 

those of the Middleware). 

4.6.2.1 ImageAcquisition 

The ImageAcquisition component is used to generate the images of a scene in different formats. 

These images can be used for different components (e.g., the ImageSegmentation and the 

GraspPlanner). 
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• It takes as input the information provided by the camera. This is processed by the CameraAPI 

specific for each device (they have been implemented for those initially identified for the 

prototypes, i.e. Photoneo9 and ZED2i10). 

• The CameraNode component uses the processed data to publish it in three different 

formats:RGB, PointCloud and Depth. This information is provided on subscription or on 

demand. 

 

 
Figure 10: HARTU FBB - Application Layer – ImageAcquisition Component Diagram 

 

4.6.2.2 ImageSegmentation 

This component is in charge of creating a pixel level segmented image. It uses two sources of 

information: 

• Information provided the ImageAcquisition component. 

• The model generated by the SegmentModeller. It takes it as input for the SAM model that 

finally generates the segmented image.  

 

 
Figure 11: HARTU FBB - Application Layer – ImageSegmentation Component Diagram 

 

 
9 https://www.photoneo.com/ 
10 https://www.stereolabs.com/products/zed-2 
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4.6.2.3 GraspPlanner 

At configuration time, the LocalGraspModeller has generated the list of valid grasp candidates for a 

given part-gripper pair. The GraspPlanner is in charge of deciding which one to use in a given scene 

with multiple objects. The component offers two working modes:  

• The heuristic mode is thought to be used in scenes where the picking sequence can be 

predefined (e.g., parts are orderly distributed on a tray) 

• The AI-based mode is thought to be used in scenes where the picking order is not predefined, 

and a dynamic decision module is required to make a decision in each scene. 

The component takes as input the RGB and PointCloud data of a scene provided by the 

ImageAcquisition component, the segmented image provided by the ImageSegmenter, the 

reference-specific LocalGraspModel, and the GlobalGraspModel obtained using Deep 

Reinforcement Learning. It also gets the pose of the part that will be finally picked up, provided by 

the PoseEstimation component. 

Finally, the component generates the motion plan to be executed by the robot to pick the selected 

object from the selected grasping point. 

 

 
Figure 12: HARTU FBB - Application Layer – GraspPlanner Component Diagram 

 

4.6.2.4 PoseEstimation 

The goal of this component is to identify the position and orientation of each segmented object, 

according to the requirements of each use case. It receives data from the ImageAcquisition and 

ImageSegmentation modules to perform this task. 

• Calls the service for the RGB, Depth, and PointCloud data from the ImageAcquisition module 

when PoseEstimation is requested. 
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• Receives the SegmentationMask data from the ImageSegmentation module. 

• Estimates and publishes the position and orientation of each object. If the request is 

performed on an object with a known CAD, this module uses the 

HARTU_PoseEstimationModel for estimation. If the request is performed on planes or 

primitive shapes, the pose is calculated with classic algorithms. 

 

Figure 13: HARTU FBB - Application Layer – PoseEstimation Component Diagram 

4.6.2.5 ReleasePlanner 

This component is responsible for generating the robot motion to place an object in the destination 

position. It provides different decision alternatives depending on the application. 

• In some cases it needs to monitor the way the object has been picked (to create a mosaic), 

information provided by the GraspedPartMonitor component.  

• It uses the information provided by the ReleaseZoneMonitor component to know the free 

space available at the target area, e.g., the free space in a container where we need to create 

a mosaic with the picked parts. 

• Sometimes it needs to identify the reference picked by means of the Barcode label, 

information provided by the BarCodeReader Component. 

• It calls the MosaicGenerator component to estimate the best pose of the part in the target 

container (in the case of mosaic generation). In some particular cases, it is an external system 

who calculates it (e.g., a warehouse system). 



D2.1 – HARTU Architectural specification and integration plan 

 
 

 33 
 

 
Figure 14; HARTU FBB - Application Layer – ReleasePlanner Component Diagram 

 

4.6.2.6 AdaptiveMPC 

Adaptive MPC is a torque-based robot controller that adapts its control parameters to the current 

situation using Gaussian Mixture Regression (GMR)11. The current situation can be deduced from 

the given task and the perceived contact forces using ART-based contact classification.  

 

Figure 15: HARTU FBB - Application Layer – Adaptive MPC Component Diagram 

Interfaces: 

• [In] Reference Pose: Desired position/orientation of the robot as continuous data stream 

• [In] Task: The current assembly task at hand. Will be used to select the appropriate set of 

control parameters. 

 
11 https://github.com/AlexanderFabisch/gmr 
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4.6.2.7 ImitationLearning 

Imitation learning provides an architecture for intuitive specification and execution of assembly 

tasks on robotic manipulators (single- or dual-arm), i.e., tasks that are subject to complex contact 

forces with the environment. It can be operated in two modes: Recording (Learning) Mode, where 

the operator teaches a task, and the system generates a dynamic movement primitive (DMP), and 

Execution Mode where a pre-learned DMP is executed given a task specific goal pose, which typically 

is provided by the perception system of the robot.  

 

Figure 16: HARTU FBB - Application Layer – Imitation Learning Component Diagram 

Interfaces: 

• [In] Goal Pose: Target pose of the DMP, provided by the perception system. 

• [In] Record/Store: Trigger to start recording of the trajectory. 

• [In] Execute: Trigger to start execution of an assembly task. 

• [In] Activate Hand Guiding: Trigger to activate hand guiding mode. 

 

4.6.3 Information Layer FBBs Specification 

The Information Layer contains one functional block or Data & Models (MOD.IL.DEM). This block 

interacts with other Application Layer’s functional blocks and with the components of each block 

using its data models as input to perform certain operations or for configuring the component to 

start its operational phase within the system. Figure 17 shows the internal structure of the 

component and the main relationships with the components of the Application Layer blocks: 



D2.1 – HARTU Architectural specification and integration plan 

 
 

 35 
 

 

Figure 17: HARTU FBB – Information Layer – Components Diagram 

 

4.6.3.1 HARTU_SegmentModel  

It is the result of training YOLOv5 with the set of images created for a specific part reference, by the 

SegmentModeller component. Later, the ImageSegmentation component uses this model as input 

for the SAM model that, finally, provides the segmented image. 

 
Figure 18: HARTU FBB - Information Layer – HARTU_SegmentModel 

 

4.6.3.2 LocalGraspModel 

The LocalGraspModel contains the information of the valid grasping points for a given part reference 

and gripper. It is created by the LocalGraspModeller offline, once per object. 

 
Figure 19: HARTU FBB - Information Layer – LocalGraspModel 

4.6.3.3 GlobalGraspModel  

This model includes the configuration for two different Global grasping strategies: 

• The weights for the heuristic version 

• The weights of the trained DRL model for the AI-based version 

Additionally, the model includes the Identifier of the end effector and others that will be defined 

during the development of the GlobalGraspModeller (scheduled by M24). 
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Figure 20: HARTU FBB - Information Layer – GlobalGraspModel 

 

4.6.3.4 HARTU_PoseEstimationModel  

This includes the configuration of model parameters and the weights of the trained models. The 

configurations are included in YAML files, while the model weights are saved as an ONNX model. 

 

Figure 21: HARTU FBB - Information Layer – HARTU_PoseEstimationModel 

4.6.3.5 HARTU_DMPModel  

Represents the parameters of a dynamic movement primitive, e.g., dimension, weights of the 

forcing term, execution time, etc. YAML files are used for disk I/O.  

 

Figure 22: HARTU FBB - Information Layer – DMPModel 

 

4.6.3.6 HARTU_ARTModel  

Represents the parameters of the neural networks used inside the ART classifier, in principle only 

the weights of the neurons. MessagePack12 is used for disk I/O.   

 
12 https://msgpack.org/ 
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Figure 23: HARTU FBB - Information Layer – ART Model 

 

4.6.3.7 HARTU_GMMModel  

Represents the parameters of a Gaussian Mixture Model, i.e., priors, means, covariances of the 

Gaussians. According to the implementation by Fabisch13. Pickle14 is used for disk I/O. 

 

Figure 24: HARTU_GMMModel 

4.6.4 Middleware Layer FBBs Specification 

The Middleware Layer contains one functional block or HARTU Client Library (MOD.ML.CLL). Mainly 

this block contains low-level components native to the ROS operating system, which interact directly 

with the robot and in general with the physical part of the system. 

4.6.4.1 Adaptive Resonance Theory (ART) Classifier 

ROS2 component for classification of contact situations based on proprioceptive robot sensors.  

 

Figure 25: HARTU FBB - Middleware Layer – ART Classifier Component Diagram 

Interfaces: 

 
13 https://github.com/AlexanderFabisch/gmr/ 
14 https://docs.python.org/3/library/pickle.html 
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• [In] Joint torques: Measured motor torques of the manipulator. 

• [In] Contact wrenches: Measured force/torque at the end effector. 

• [Out] Category: Predicted label of the contact situation. 

 

4.6.4.2 Inverse Reinforcement Learning 

The component for inverse reinforcement learning module has not yet been specified, as the 

corresponding work has not started yet.  

4.6.4.3 Dynamic Movement Primitives 

ROS2 component for recording, storing, and executing single- or dual-arm Dynamic Movement 

Primitives (DMP). It uses an open-source movement primitives library provided by DFKI15 

 

 

Figure 26: HARTU FBB - Middleware Layer – Dynamic Movement Primitives Component Diagram 

Interfaces: 

• [In] Record Trajectory: ROS2 action server which records the pose of the robot end 

effector(s) and stores it as a time-dependent trajectories. 

• [In] Generate DMP: ROS2 action server which generates a DMP from the recorded data and 

stores it as yaml-file. 

• [In] Execute DMP: ROS2 action server which executes the generated DMP point-by-point 

given the initial and desired final pose. 

• [In] Transforms: The ROS2 robot frame transformation tree. 

• [In] Contact Wrench: The force/torque measured at the robot end effector. 

 
15 https://github.com/dfki-ric/movement_primitives 
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• [Out] Commanded Pose, Commanded Pose left/right: Next end effector pose(s) computed 

by the DMP. 

 

4.6.4.4 Model Predictive Controller  

A robot controller which uses optimization to regulate one or multiple tasks while respecting the 

physical constraints of the robot and the environment. It is based on the Crocoddyl library16 for 

optimal multi-contact point control. 

 

 

Figure 27: HARTU FBB - Middleware Layer – Model Predictive Control Component Diagram 

Interfaces:  

• [In] Reference Pose: Desired end effector position/orientation 

• [In] Constraints: Constraints of the physical system to control. 

• [In] Costs: Cost functions to optimize. 

• [In] Control parameters: E.g., stiffness and damping.  

• [Out] Commanded Torques:  Joint torques to achieve all desired tasks while respecting the 

physical constraints. 

  

 
16 https://github.com/loco-3d/crocoddyl 
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4.6.4.5 Behaviour Trees 

ROS2 component that allows the execution of a behaviour tree previously created through the 

AppManager (Builder). 

• It makes use of the behaviortreecpp_v3 library. 

• It takes as input the AppConfigurationFile generated with the AppManager (Builder). 

• The BTExecutor is the component in charge of loading our custom nodes using the 

behaviortreecpp_v3 library and the structure of the tree defined in the 

AppConfigurationFile. 

• Then, the BTExecutor sends the ticks to the tree in a main loop and verifies the result 

(Success or Failure). 

 
Figure 28: HARTU FBB - Middleware Layer – BehaviorTree Component Diagram 

 

4.6.4.6 Deep Reinforcement Learning 

The component is used by the GlobalGraspPlanner to define the model to select the part to be 

picked in a cluttered scene. 
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Figure 29: HARTU FBB - Middleware Layer – DeepReinforcementLearning Component Diagram 

4.7 Requirements Traceability Matrix 

The traceability matrix maps in a table the identified Functional Building Blocks (FBB) and presented 

in section 4.6 of this deliverable with the requirements identified in section 9 of D1.1, highlighting 

which block implements and satisfy a specific requirement, as well as to give a clear understanding 

of each block objectives.  

Some requirements contained in D1.1 are not contained in this table as they will not have an impact 

in terms of functionality in the demonstrators (thus, they will not be included in the prototypes). 

Furthermore, MOD.ML.CLL functional block has not been included in the table because it is a purely 

back-end and not directly connected to the requirements which are mostly satisfied in the 

application layer.  

The following table also contains different types of requirements like User, Functional and Non-

Functional ones: 

Table 3. Requirements – Functional Building Blocks (FBB) traceability matrix 

Requirements MOD.FL.UIT MOD.AL.PER MOD.AL.APC MOD.AL.GRP MOD.IL.DEM 

FR-01  X X X X 

FR-02  X  X  

FR-03  X X X  

FR-04  X  X  

FR-05  X X   

FR-06  X X   

FR-07  X   X 

FR-08   X X X 

FR-09  X    

FR-10   X   

FR-11   X   

FR-12  X X X  

FR-13  X    
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FR-14  X X X X 

FR-15  X    

FR-16      

FR-17  X   X 

FR-18  X X X  

FR-19   X   

FR-20  X   X 

FR-21   X X X 

FR-22   X   

UR-01   X   

UR-02 X     

UR-03 X  X   

UR-04 X  X   

UR-05 X X X   

UR-06 X X    

UR-08 X     

NR-01  X X X  

NR-02   X   

NR-03  X X X X 

NR-04  X   X 

NR-05 X ? X   

NR-06  X X X  

NR-07  X X   

NR-08  X X X  

NR-09   X   

NR-10  X    

NR-13  X X X  

NR-14  X X X  

NR-15  X X X  

NR-16  X X X X 

NR-18  X   X 

NR-19   X   

NR-20  X X X  

NR-21  X  X  

NR-22   X   

NR-23  X  X  

NR-24  X X X X 

NR-25  X X X  

NR-26  X X  X 

NR-27   X   

NR-28  X X X X 

NR-29  X X X  

NR-30   X X  
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5 HARTU Integration Plan 

The integration plan details the process that will be implemented to release all the software 

components in each FBB. The plan is related to the development phase of the component and not 

to the deployment. 

The following software releases are considered: 

• Alpha release (a preliminary version of software component) 

• Beta release (a more mature version of software component) 

• Final release (a consolidated version of software component) 

As a second step, the integration will detail the software type for each single component, both in 

case of “internal” component behaviour (e.g., porting from ROS to ROS2), and if integration will rely 

on external components. They will also be provided guidelines for component development and the 

SCM process. The environment that will be used for software change management will be Gitlab17. 

5.1 General Integration Status 

The General Integration status contains the month (M) when an entire functional block will be 

released and made available for system and integration test between software components or 

ready to be used and tested by end users. It includes three different versions: Alpha, Beta and Final 

release.  

The following table shows “when” in the project, each release will be available for test or 

integration. Each release will contain features consistent or not depending on the status (alpha-

beta-final): 

 

Table 4 HARTU FBB General Integration Status. 

FBB Related  
Use Case 

Release 

Alpha Beta Final 

MOD.FL.UIT UC#1, UC#2, 
UC#3, UC#4, 
UC#5, UC#6, 
UC#7 

M18 M24 M30 

MOD.AL.PER M18 M27 M30 

MOD.AL.APC M18 M24 M30 

MOD.AL.GRP M18 M24 M30 

MOD.IL.DEM M14 M24 M30 

MOD.ML.CLL M14 M18 M24 

5.2 Component Detailed Plan 

The Component Plan shows an overview of all the features provided for by the HARTU system and 

the type i.e., UI, service, module, model, etc. Furthermore, if the component needs to be integrated 

with another component (within the same FBB block, or between components of different blocks), 

it reports the component with which it will be integrated.  

 
17 https://about.gitlab.com/ 
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This information is reported in the following table: 

Table 5. HARTU FBB Component, Detailed Integration Plan 

Component Reference 
Component 

Integration 
Description 

Features 

GUI Back-
end 

service 

AI 
Module 

AI 
Model 

Data
store 

Adaptive 
Model 
Predictive 
Control 

Robot Hardware 
Interface 

ROS2, joint-level 
commands (position/ 
torque) 

  X   

Dynamic 
Movement 
Primitives 

Adaptive Model 
Predictive Control 

ROS2, Cartesian 
commands (Pose, 
Twist) 

  X   

Hand 
Guiding 
Controller 

Robot Hardware 
Interface 

For user-
demonstration / 
teach-in, hardware-
specific 

 X    

ART 
Classifier 

Model Predictive 
Control 

ROS2, Via Parameter 
adaptation 
component 

  X   

Pose 
Estimation 

Imitation Learning ROS2, Perception 
delivers goal pose for 
DMP 

  X   

App 
Manager 
(Builder) 

LocalGraspModelle
r 

Launches the 
Component ROS 2 
node) and 
communicates 
through ROS2 
interfaces 

   X  

App 
Manager 
(Builder) 

SegmentModeller, 
 

Launches the 
Component (ROS 2 
node) and 
communicates 
through ROS2 
interfaces 

   X  

App 
Manager 
(Builder) 

SyntheticImageDat
aGenerator and 
Unity 

UNITY Application 
 X    

App 
Manager 
(Builder) 

LocalGraspPointTe
ster 

Launches the UNITY 
App. using MuJoCo as 
physics engine. 

   X  

App 
Manager 
(Builder) 

GlobalGraspPolicyT
ester 

Launches the UNITY 
App. using MuJoCo as 
physics engine. 

   X  
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App 
Manager 
(Control) 

FBBs in the 
Application Layer  

Communicates with 
the components 
when required using 
ROS2 interfaces 

X     

ImageAcqui
sition 

CameraNode and 
CameraAPI 

Integration through 
ROS2 service 

 X    

GraspPlann
er 

PoseEstimation, 
ImageSegmentatio
n 

Integration through 
ROS2 interfaces  X    

ReleasePlan
ner 

MosaicGenerator, 
BarCodeReader, 
ReleaseZoneMonit
or, 
GraspedParMonito
r 

Integration through 
ROS2 interfaces 

 X    

Pose 
Estimation 

Perception Integration as a ROS2 
service 

 X    

 

5.3 Software Configuration Management 

Software Configuration Management (SCM) is a set of processes, policies, and tools used to manage 

changes to software systems. It encompasses version control, change tracking, release 

management, and other activities aimed at ensuring the integrity and consistency of software 

throughout its lifecycle. 

The subsequent sections delineate the structure of this type of activities and detail the efficient 

configuration of tools to facilitate collaboration among distributed development teams. This aims 

to precisely plan and monitor the coordinated progress, quality, and integration status of various 

components. 

5.3.1 Source code repository 

The adoption of a Source Code Version Control tool brings several benefits to software development 

teams. It offers a set of tools that facilitate and document changes in the source code, offering a 

centralized repository for storage. These tools prevent conflicts by restricting simultaneous editing 

of the same module by multiple SW developers, ensuring a smooth workflow. Every modification 

made to the source code is recorded, allowing for comprehensive tracking. SCM tools empower SW 

developers to check out modules from the repository, make and document changes, and then save 

the edited modules back to the repository. The ability to discard changes, when necessary, provides 

flexibility, allowing a return to a previous baseline. Advanced SCM tools go beyond basic 

functionalities, supporting parallel development and accommodating geographically dispersed 

teams, like the scenario of European projects such as this one. 

In HARTU project, GitLab has been selected due to its assortment of complimentary tools designed 

to assist developers throughout the entire software development lifecycle, of which the most 
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relevant are outlined below. Also, GitLab is a leader in the Gartner Magic Quadrant for DevOps 

Platforms18. 

1. GitLab permits the creation of both private and public repositories, and it's free for both. 

Prior to open sourcing the code developed for HARTU, it is advisable for development teams to 

utilize an exclusive sandbox environment, enabling operations within a private repository. 

2. GitLab offers an internal, integrated tool for CI/CD/CT that leverages the capabilities of Docker 

container technology. 

This represents one of the most important features as it allows the adoption of simple, powerful 

build & test automation software, not split among different tools. 

3. It offers all the elements needed for the entire DevOps lifecycle within a unified framework. 

GitLab provides various valuable features, such as the "Issues" feature, which allows the team to 

monitor features and bugs associated with each release of the components developed. In this 

context, the term "team" is used in a broader sense, encompassing not only SW developers but also 

domain experts who contribute to establishing requirements for ongoing enhancements. 

 

Figure 30: GitLab "Issues" feature example 

4. Self-Managed 19 Core version aka Community Edition (CE) is open sourced20. 

Having the traditional advantages of an open-source product, like cost-effectiveness and freedom 

from vendor lock-in, adds valuable flexibility. 

Hence, to capitalize on these capabilities, an SCM system based on GitLab has been established and 

is configured and managed by Engineering. The system also features a dedicated server which runs 

a GitLab Runner21 instance configured for executing the jobs of CI/CD pipeline, as elaborated in the 

subsequent sections, starting with the building stage. 

 
18 https://www.gartner.com/doc/reprints?id=1-2DHNOAC7&ct=230504&st=sb 
19 https://about.gitlab.com/pricing/#self-managed 
20 https://gitlab.com/rluna-gitlab/gitlab-ce 
21 https://docs.gitlab.com/runner/ 
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To initiate the use of this system, which is open for utilization upon request, project partners only 

need to furnish their email addresses and inform Engineering about their intended role, which could 

be, for example: 

• Developer 

• Tester  

• Product owner (e.g., pilot domain expert) 

Then, the partner will receive an e-mail with instructions to setup autonomously the account 

created, as in the following example: 

Hello <user>! 
The Administrator created an account for you. 
Now you are member… 

Login ……………….<your-email> 

Click here to set your password 

This link is valid for 2 days.  
After it expires, you can request a new one. 

 

5.3.2 CI/CD setup and automation 

Continuous Integration (CI) is a collaborative software development practice where team members 

integrate their work frequently, typically on a daily basis, ensuring multiple integrations per day. 

Automated builds, including tests, are performed with each integration to swiftly identify and 

address integration errors. This approach has proven to significantly reduce integration issues and 

accelerate the development of cohesive software for many teams. Therefore, the adoption of this 

practice is delegated to each laboratory, tailored to its individual repository and team. However, the 

tools and processes established and provided within the HARTU project facilitate this 

implementation and coordination between different laboratories and SW development teams. In 

fact, every member of these teams is motivated by the presence of these tools and guided by agile 

best practices and basic guidelines -as those outlined at §5.3.4- to regularly submit their code (e.g. 

push to the remote repository). This proactive approach aims to prevent the occurrence of conflicts 

arising from misalignments in source code commits whose resolution can be both frustrating and 

time-consuming.  

The initial measure taken to facilitate Continuous Delivery (CD) involved automating the build 

process for modules. This is achieved by executing the associated Docker files, where adopted, 

which comprise the necessary instructions for constructing each Docker image. This automation is 

initiated with every push to the remote repository, resulting in the generation of an internal build 

as depicted in the picture below. 
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Figure 31: Docker based build process automated with GitLab in HARTU 

Starting from the left, when a developer pushes to the 'develop' branch of the HARTU repository, 

this action triggers a job execution in GitLab CI/CD pipeline. The job is pre-configured and relies on 

GitLab Runner, as introduced previously in §5.3.1, a component dedicated to executing jobs for 

different stages, such as the “build” one, dependent on project-specific configurations. In this 

workflow, the Docker-based Runner, configured at the group level to be accessible across all HARTU 

repositories within the project (Figure 32), automatically downloads the latest source code version 

from the GitLab server. Subsequently, it initiates the building of the Docker image for the specific 

component. If errors occur during the build, the job is halted, and an automatic notification is sent 

back to the developer via the GitLab server. 
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Figure 32: GitLab Runner setup for HARTU repositories 

Upon the successful completion of image construction, the Docker image is pushed to the internal 

private registry22, a service provided with the GitLab server which significantly simplifies the 

continuous delivery (CD) in the early stages, at least. In fact, this internal registry makes the Docker 

image of a HARTU component accessible for download and testing potentially in any remote 

locations, such as the different HARTU laboratories.  

 

Figure 33: GitLab pipeline basic representation 

The picture above shows the basics of a GitLab pipeline, which are: 

• Jobs are the fundamental elements of a CI/CD pipeline as contain the instructions of the 

actions to be performed. 

• Jobs are grouped in stages determining when they must be executed. 

• One stage can start only if all the jobs of the previous stage have been completed 

successfully. 

• Jobs belonging to one stage can be executed in parallel. 

• Each job is executed by a GitlLabRunner executor running outside the GitLab server. 

The following picture illustrates the pipeline definition configured for a SW component that can be 

Dockerised for the deployment. 

 
22 https://docs.docker.com/registry/ 
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Figure 34: .gitlab-ci.yml -> pipeline definition to automate Docker build process within GitLab 

5.3.3 Quality control 

The quality control of the source code, a good practice also known as code-review, consists of 

verifying lines of code written against rules which are defined by coding style conventions; different 

conventions are available for any programming language, such as those listed and made publicly 

available by Google style guides23. 

On one hand, this good practice primarily ensures the seamless maintainability24 of the source code, 

encompassing changeability, modularity, understandability, testability, and reusability. On the 

other hand, by proactively identifying bugs, undefined behaviour, and risky coding constructs, this 

type of test contributes to improving program execution and, consequently, enhances quality at the 

runtime level. 

In the contemporary landscape, developers have access to various tools and platforms that facilitate 

the automatic verification of coding standards and conventions, ensuring readability and monitoring 

code complexity within acceptable bounds. Consequently, significant attention has been directed 

toward determining the coding standards, conventions, and best practices for the APRO modules, 

along with the supporting tools necessary for implementation. 

These tools predominantly function as linting utilities, conducting a form of static analysis aimed at 

identifying problematic patterns or weaknesses, such as those outlined in the Common Weakness 

Enumeration (CWE) 25, and ensuring code adherence to specific style guidelines.  

 
23 https://github.com/google/styleguide#google-style-guides 
24 https://www.it-cisq.org/standards/code-quality-standards/ 
25 https://www.it-cisq.org/pdf/cisq-weaknesses-in-ascqm.pdf   



D2.1 – HARTU Architectural specification and integration plan 

 
 

 51 
 

 
Figure 35: excerpt of Google Style Guides 

 

 
Figure 36: excerpt of Common Weakness Enumeration 

(CWE) 

 

A linter, as a static code analysis tool, plays a crucial role in scrutinizing source code to flag potential 

issues, including programming errors, bugs, stylistic errors, and suspicious constructs. In the 

followings are briefly outlined relevant linters for the most widely used programming and scripting 

languages within the APRO components. Additionally, a table is included below (¡Error! No se 

encuentra el origen de la referencia.), mapping these languages to the respective components 

where they are going to be adopted. 

• C++: 

Cppcheck26 is a static analysis tool tailored for C/C++ code, offering distinctive code analysis 

capabilities to identify bugs. Its emphasis lies in the detection of undefined behaviour and 

hazardous coding constructs, with the aim of minimizing false positives. Additionally, 

Cppcheck is engineered to analyze C/C++ code, even when it exhibits non-standard syntax, 

a feature particularly relevant in embedded projects. 

• Python:  

PEP8 Style Guide for Python Code27 establishes coding conventions for Python code, 

encompassing the standard library included in the primary Python distribution. 

• JavaScript:  

ESLint28 is a static code analysis tool designed to detect problematic patterns present in 

JavaScript code. The rules within ESLint are configurable, allowing for the definition and 

loading of customized rules. ESLint addresses both code quality and coding style issues. 

 
26 https://cppcheck.sourceforge.io/ 
27 https://peps.python.org/pep-0008/ 
28 https://eslint.org/ 
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Table 6. APRO SW component - programming language map 

Programming  
language 

APRO component 
Python C++ C# 

APP Builder   X  

ImageAcquisition  X  

ImageSegmentation X   

PoseEstimation X X  

ReleasePlanner X X  

SegmentModeller X   

GlobalGraspPlanner X X  

GraspPlanner  X  

ART Classifier  X  

Dynamic Movement Primitives X X  

Adaptive MPC X X  

SimEnv X  X 

 

As previously mentioned, a linter is a tool used for coding reviews with the goal of enhancing code 

quality. Numerous linters are available for various programming languages, and many developers 

currently integrate these tools into their preferred IDEs. Some have automated them as an 

additional step in their CI processes, while others employ them in both ways, a practice being 

adopted and in preparation for APRO components. 

To automate these checks within the APRO CI/CD process outlined in §5.3.2, the "Code Quality" 

feature of GitLab has been explored. This feature, along with its widget, facilitates the seamless 

integration of linters by executing them through the GitLab Runner. The GitLab Runner, as 

previously discussed, is a GitLab component dedicated to running code for building and testing 

stages based on specific configurations. In this case, existing configurations for the APRO CI/CD 

pipelines can be extended to allow linter execution. 

Utilizing the GitLab "Code Quality" feature and its widget, linters based on Code Climate29 engines30 

are employed. These components are modular plugins available for nearly any programming 

language, offering extensibility and open-source freedom. In essence, a Code Climate Engine is a 

Docker Image that invokes a program to parse a configuration file and analyse source code files, 

potentially generating formatted output indicating detected issues. 

Through a wrapper within the GitLab Code Quality project31, these engines can be easily integrated 

and run within pipelines, starting from a Docker image built within the project itself. This image 

includes default Code Climate configurations, and only the Docker image(s) for the specific linter(s) 

need to be pulled. Default configurations can be overridden to meet the specific needs of each APRO 

 
29 https://codeclimate.com/quality 
30 https://docs.codeclimate.com/docs/list-of-engines 
31 https://gitlab.com/gitlab-org/ci-cd/codequality   
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component (languages, types of quality checks) by creating dedicated config files for each APRO 

module repository. 

The benefits of this solution are numerous, including: 

• Integration into GitLab's pipelines32 in consistent alignment with the CI/CD workflow 

described in §5.3.2 and the Docker-based approach for deployments. 

• Displaying a comprehensive list of code quality violations generated by a pipeline at the end 

of the process. 

• Utilizing Code Climate Engines, which are free and open source. 

• No subscription requirement. 

• Extensibility with new plugins. 

From a practical standpoint, to configure these engines for automatic execution in GitLab, in 

addition to having a pre-configured GitLab Runner for job execution, two files need setup. These 

files are the .gitlab-ci.yml (already present if a pipeline has been defined, such as for automating 

testing and building, as introduced in §5.3.2) and the .codeclimate.yml. Both of them must be placed 

in the root folder of the GitLab repository, and their content is briefly outlined as follows. 

.gitlab-ci.yml:  

The excerpt displayed in 

Figure 37 illustrates a 

section of this configuration 

file.  

To execute the job involving 

the linters execution, three 

key configuration lines have 

been added, highlighted by 

as many blue bullets in the 

figure. 

The first step involves 

incorporating the template, 

where a significant portion 

of the necessary work is 

already predefined. 

Following this, it's essential to add a "test" stage and a job named "code_quality" to seamlessly 

integrate with the template. Within the "code_quality" job, settings can be configured to override 

defaults set in the template. For instance, to enhance security and performance33, Docker-in-Docker 

is deactivated, and a custom tag (named "linter") is established to ensure this job runs exclusively 

on a private runner with a matching tag. Finally, the configuration specifies the file name and format 

 
32 https://docs.gitlab.com/ee/ci/pipelines/ 
33 https://docs.gitlab.com/ee/ci/testing/code_quality.html#improve-code-quality-performance-with-private-runners 

Figure 37: extract from gitlab-ci.yml showing code-review setup in to a pipeline 
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for collecting job output, making it accessible to users and developers for download as an artifact 

from the GitLab GUI. 

.codeclimate.yml: 

This file34, as shown in Figure 38, allows to specify the linters 

that will be applied to the source code, determining which 

quality checks will be carried out. Each enabled plugin in the 

configuration corresponds to a dedicated Docker image that is 

automatically fetched and executed as needed in the running 

job configured in the .gitlab-ci.yml. These specific 

plugins complement a set of general checks—currently, there 

are ten maintainability checks35— which are enabled by 

default (and therefore not displayed in this file excerpt). These 

checks cover various types of measures, as follows: 

1. Argument count (argument-count): methods or 

functions defined with a high number of arguments. 

2. Complex logic (complex-logic): boolean logic that may 

be hard to understand. 

3. File length (file-lines): excessive lines of code within a 

single file. 

4. Identical blocks of code (identical-code): duplicate code which 

is syntactically identical (but may be formatted differently). 

5. Method complexity (method-complexity): functions or methods that may be hard to 

understand (Cognitive Complexity). 

6. Method count (method-count): classes defined with a high number of functions or methods. 

7. Method length(method-lines): excessive lines of code within a single function or method. 

8. Nested control flow (nested-control-flow): deeply nested control structures like if or case. 

9. Return statements (return-statements): functions or methods with a high number of return 

statements. 

10. Similar blocks of code (similar-code): duplicate code which is not identical but shares the 

same structure (e.g., variable names may differ).  

 

5.3.4 Guidelines to ease collaboration 

Some basic practical rules have been shared among the partners contributing to the development 

of APRO platform modules and their components. These rules are intended to ensure standardized 

and cohesive work between the different teams and include: 

1. One single GitLab repo is dedicated to each HARTU module (set of components e.g. a FBB) 

in the HARTU Group. 

 
34 https://docs.codeclimate.com/docs/advanced-configuration#section-configuration-formats 
35 https://docs.codeclimate.com/docs/maintainability#section-checks 

Figure 38: extract from codeclimate.yml 
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2. Each HARTU repo shall have mainly two branches, ’master’ and ’develop’ (developers can 

create further branches of 'develop’, where needed). 

3. Developers shall always git push to the ’develop’ branch (default choice for HARTU 

Group). 

4. The ’master’ branch should be aligned (e.g. through a merge request) upon the release of 

a new version, adhering to the following rule. 

5. The master branch should contain code that is stable and includes tagged version numbers. 

6. Naming convention: The internal organization of each HARTU module repository should 

adhere to the structure illustrated in the screenshot below. 

 

Figure 39: HARTU repositories naming convention 

It's important to note that these simple rules should be considered a preliminary example for the 

stated purpose and are subject to change during the project as needed. 

6 Conclusion 

This deliverable contains the HARTU RA providing a complete and exhaustive design of the HARTU 

software solution, outlining also its implantation (to be further refined during the implementation 

phase in the technical WPs (i.e., in WP2, WP3 WP4 and WP5) before starting the piloting and 

validation activities within the scope of WP1. These results have been driven by the previous work 

and results of WP1, notably the analysis of requirements and reference applicative business 

scenario. 

Key highlights include: 

HARTU will provide automated AI based grasp and release planning,  electro-active soft grippers and 

contact-rich assembly results for manufacturing scenarios ensuring compliance with ethics and legal 

requirements providing guidance on Human-AI teaming and defining user profile and skills for the 

new working scenario in Industry 5.0. 
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HARTU RA covers and specifies the functionalities that the software solution addresses in three 

different but interconnected areas: shopfloor, functional and technological. 

HARTU RA provides simulation and adaptation capabilities in real and physical factory 

environments, including real-time operations considering the variability of the process that an 

operator is performing, considering the main variability that can affect the correct execution of a 

routine or the execution of a process pipeline. 

The HARTU RA presents all the functional and technical features that the system will have to 

implement. The HARTU solution enables the execution of a wide range of business scenarios, 

building its foundation on principles of modularity, interoperability, scalability, flexibility, and 

adaptability. 

This document also provides the basis for the implementation of the HARTU software solution and 

integration activities, that will be performed as part of the technical work packages, in particular 

WP2, WP3 and WP4. In particular, it defines the main components and structuring principles of the 

HARTU solution, also in terms of implementation, ensuring that interdependent activities can be 

streamlined in the best possible way, and in any case will provides a framework to cover the 

functional and technical requirements defined by the project partners. 

Without any doubt, the design and implementation of HARTU RA will also guide the deployment 

and validation of use cases within WP1. As a rule, use cases may require some customizations, 

without however affecting the components of the solution described in this document. The 

identified components could be extended during solution development, as long as they remain 

backward compatible according to the specifications described in this document, thus not affecting 

the systems using the interfaces they expose. 

However, design revisions may occur as a result of development and integration activities: 

• new technologies selected to further improve the solution or a specific activity. 

• given some changes in requirements and use cases. 

• general evolution of the project. 

This document will be kept alive, for future refinements and/or improvements (in terms of revisions) 

of the overall HARTU design solution and specifications, in order to report (if any) a continuous 

update of the internal structure of the blocks, their communication with other blocks, the necessity 

to add new components or new features for the whole system (e.g. if new requirements arise for 

use cases or during the testing phase to integrate new technologies to fully satisfy the results). 
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