

This project has received funding from the European Union’s Horizon Europe - Research and Innovation program
under the grant agreement No 101092100. This report reflects only the author’s view and the Commission is not
responsible for any use that may be made of the information it contains.

D2.4
HARTU-APP-BUILDER Open Tool

Deliverable ID: D2.4

Project Acronym: HARTU

Grant: 101092100

Call: HORIZON-CL4-2022-TWIN-TRANSITION-01

Project Coordinator: TEKNIKER

Work Package: WP2

Deliverable Type: OTHER

Responsible Partner: TEK

Contributors: TEK

Edition date: 28 June 2024

Version: 03

Status: Final

Classification: PU

D2.4 HARTU-APP-BUILDER Open Tool

 2

HARTU Consortium

HARTU “Handling with AI-enhanced Robotic Technologies for flexible manufactUring” (Contract No.

101092100) is a collaborative project within the Horizon Europe – Research and Innovation program

(HORIZON-CL4-2022-TWIN-TRANSITION-01-04). The consortium members are:

1

FUNDACION TEKNIKER (TEK)
20600 Gipuzkoa | Spain

Contact: Iñaki Maurtua
inaki.maurtua@tekniker.es

2

DEUTSCHES FORSCHUNGSZENTRUM FUER
KUENSTLICHE INTELLIGENZ GMBH (DFKI)
67663 Kaiserslautern | Germany

Contact: Vinzenz Bargsten
vinzenz.bargsten@dfki.de

3

ASOCIACIÓN DE INVESTIGACIÓN
METALÚRGICA DEL NOROESTE (AIMEN)
36418 Pontevedra| Spain

Contact: Jawad Masood
jawad.masood@aimen.es

4

ENGINEERING INGEGNERIA

INFORMATICA S.P.A. (ENG)

00144 Rome| Italy

Contact: Riccardo Zanetti

riccardo.zanetti@eng.it

5

TOFAS TURK OTOMOBIL FABRIKASI

ANONIM SIRKETI (TOFAS)

34394 Istanbul | Turkey

Contact: Nuri Ertekin

nuri.ertekin@tofas.com.tr

6

PHILIPS CONSUMER LIFESTYLE BV (PCL)

5656 AG Eindhoven | Netherlands

Contact: Erik Koehorst

erik.koehorst@philips.com

7

ULMA MANUTENCION S. COOP. (ULMA)

20560 Gipuzkoa | Spain

Contact: Leire Zubia

lzubia@ulmahandling.com

8

DEEP BLUE Srl (DBL)

00193 ROME | Italy

Contact: Erica Vannucci

erica.vannucci@dblue.it

9

FMI HTS DRACHTEN B.V. (FMI)

NL-4622 RD Bergen Op Zoom,

Netherlands

Contact: Floris goet

floris.goet@fmi-improvia.com

10

TECNOALIMENTI S.C.p.A (TCA)

20124 Milano | Italy

Contact: Marianna Faraldi

m.faraldi@tecnoalimenti.com

11

POLITECNICO DI BARI (POLIBA)

70126 Bari | Italy

Contact: Giuseppe Carbone

giuseppe.carbone@poliba.it

12

OMNIGRASP S.r.l. (OMNI)

70124 Bari | Italy

Contact: Vito Cacucciolo

vito.cacucciolo@omnigrasp.com

13

INDUSTRIAL TECHNOLOGY RESEARCH

INSTITUTE

INCORPORATED (ITRI)

310401 Hsinchu | Taiwan

Contact: Curtis Kuan

curtis.kuan@itri.org.tw

14

INFAR INDUSTRIAL Co., Ltd (INFAR)

504 Chang-hua County | Taiwan

Contact: Simon Chen

simon@infar.com.tw

D2.4 HARTU-APP-BUILDER Open Tool

 3

Document history

Date Version Status Author Description

02/05/2023 01 Draft TEK Document
template

12/06/2023 02 Draft TEK First version
28/06/2023 03 Draft TEK Version

submitted

D2.4 HARTU-APP-BUILDER Open Tool

 4

Executive Summary

This document describes the main concepts of HARTU-APP-MANAGER, the tool that HARTU makes

available to end users and system integrators to create and control robotic applications, thus giving

rise to two different functionalities: HARTU-APP-CREATOR and HARTU-APP-CONTROL.

The core of HARTU-APP-MANAGER is based on the concept of behaviors trees and its

implementation using BehaviorTree.CPP 3.8, a C++ library for building BehaviourTrees. The GUI is

inspired and based GROOT, an advanced open IDE for creating and debugging BehaviourTrees.

HARTU-APP-MANAGER is an open tool that will be made accessible through the GITLAB

infrastructure created by HARTU.

D2.4 HARTU-APP-BUILDER Open Tool

 5

1 Table of contents
1 Introduction ... 8

1.1 Objective.. 8

1.2 Codeless programming .. 8

1.3 Node-RED vs Behaviour Trees ... 9

2 HARTU-APP-MANAGER: common entry point ... 10

3 Robotic application builder: HARTU-APP-BUILDER ... 11

3.1 HARTU-APP-BUILDER: Main interface description .. 11

3.2 Icon bars .. 12

3.2.1 Simulation tools ... 12

3.2.2 Programming by demonstration .. 14

3.2.3 BT management ... 14

3.2.4 BT Visualization .. 14

3.3 Palette of components .. 15

3.3.1 Action ... 15

3.3.2 Condition control ... 22

3.3.3 Decorator ... 22

3.3.4 Subtrees ... 23

4 Control of robotic applications: HARTU-APP-CONTROL .. 26

4.1 Behaviour trees: workflow overview .. 26

4.2 HARTU-APP-CONTROL: Main Interface description .. 26

4.3 HARTU-APP-CONTROL: Use Case dependent Interface description 27

5 HARTU-APP-MANAGER Deployment ... 28

List of figures

Figure 1. Common access point of the HARTU-APP-MANAGER .. 11

Figure 2. HARTU-APP-CREATOR GUI .. 11

Figure 3. From left to right: Icons for adding custom nodes, loading a tree, saving the current tree

and locking/unlocking BT editing ... 12

Figure 4. Interface to define a scene ... 13

Figure 5. Interface to define the dataset of images to be generated ... 13

Figure 6. Interface to configure the gripper for the LocalGraspPlanner ... 13

Figure 7. Interfaces to select an existing gripper (left) or define a new one (right).......................... 13

D2.4 HARTU-APP-BUILDER Open Tool

 6

Figure 7. BT arranged horizontally ... 14

Figure 8. BT arranged vertically ... 14

Figure 9. BT Original non-ordered BT .. 14

Figure 10. BT after reordering .. 14

Figure 11. Basic elements of the GROOT pallete ... 15

Figure 12. AcquireSensorData node .. 16

Figure 13. ChangeFrame node ... 17

Figure 14. CircularMovement node ... 17

Figure 15. EstimateCADPoses node ... 17

Figure 16. EstimateGPCAD node .. 18

Figure 17. EstimateGPPrimitives node .. 18

Figure 18. EstimatePrimitivesPoses node .. 18

Figure 19. ExecuteLearnedMovement node ... 19

Figure 20. GetCADGraspingPose node... 19

Figure 21. GetPrimitiveGraspingPose node ... 19

Figure 22. GetSensorData node ... 20

Figure 23. LinearMovement node ... 20

Figure 24. LocateBin node ... 20

Figure 25. PathPlanning node .. 21

Figure 26. PointToPointMovement node .. 21

Figure 27. SegmentObjects node ... 21

Figure 28. SetOutput node ... 22

Figure 29. SetRobotiqGripper node ... 22

Figure 30. Example of use of repeat decorator ... 23

Figure 31. GraspingPointEstimation Subtree ... 24

Figure 32. MovePick Subtree ... 24

Figure 33. MovePostPick Subtree .. 25

Figure 34. Pick Subtree .. 25

Figure 35. Place Subtree .. 26

Figure 36. Common interface to visualize the flow of actions (BT nodes) .. 26

Figure 37. Colours for the different states of execution of the nodes .. 27

Figure 38. Interface to be customize for each Use Case ... 27

List of tables

No se encuentran elementos de tabla de ilustraciones.

D2.4 HARTU-APP-BUILDER Open Tool

 7

Acronyms

List of the acronyms

HARTU Handling with AI-enhanced Robotic Technologies for flexible
manufactUring

BT Behaviour Tree

UI User Interface

GUI Graphical User Interface

CAD Computer Aided Design

D2.4 HARTU-APP-BUILDER Open Tool

 8

1 Introduction

1.1 Objective

The objective of “Task 2.4 Application development support tool” is to provide a tool that facilitates

the definition of a robotic application and its control by end users.

Initially the use of Node-RED was considered, an open programming tool based on Node.js (non-

blocking event-driven model), whose browser-based editor would facilitate the connection of flows

using the wide range of nodes already available or by creating custom nodes using the available

editor. Thus, it would be possible to reuse functions, templates or flows.

However, after an analysis of other alternatives, it was decided to develop HARTU-APP-BUILDER

based on the concept of Behaviour Trees, in particular the implementation based on

BehaviorTree.CPP (see section 1.2).

It uses a similar concept, so it is possible to create the set of Nodes for each of the components

developed in the project and integrate with ROS2 based functionalities such as global and local

trajectory planning and controllers.

By means of the HARTU-APP-MANAGER, system Integrators / end users will create and control the

application for the 7 use cases defined for the 5 industrial end users.

IMPORTANT: Although the title of this document refers to HARTU-APP-BUILDER, it is more

appropriate to name it HARTU-APP-MANAGER, as this software offers two different functionalities:

• HARTU-APP-CREATOR, used to create and configure the robotic application

• HARTU-APP-EXECUTOR, used to control and monitor the execution of the robotic

application.

1.2 Codeless programming

Codeless robot programming refers to the development and control of robotic systems using visual,

intuitive, and user-friendly interfaces rather than traditional text-based coding. This approach aims

to make robot programming more accessible to non-experts, allowing users to create, modify, and

deploy robot behaviors and tasks without needing to write complex code.

The main features of codeless robot programming are the following:

1. Visual Programming Interfaces:

Users interact with a graphical user interface (GUI) where they can drag and drop pre-

defined blocks or nodes that represent various actions, conditions, and control structures.

These blocks can be connected to form a flowchart or diagram that represents the robot’s

behavior and logic.

2. Pre-defined Components:

D2.4 HARTU-APP-BUILDER Open Tool

 9

Libraries of pre-built components or modules are available, covering common robot actions

(e.g., moving, picking objects, sensing). Users can easily select and configure these

components to fit their specific needs.

3. Simulation and Testing:

Many codeless programming environments include simulators that allow users to test and

validate their robot programs in a virtual environment before deploying them to the actual

robot. This helps in identifying and fixing issues without risking damage to the physical robot.

4. Interactive Debugging:

Tools for real-time monitoring and debugging of robot behavior are often integrated,

allowing users to visualize the execution flow and identify problems interactively.

5. Cross-platform Compatibility:

Codeless programming tools often support multiple robot platforms and hardware,

providing flexibility and reducing the need for platform-specific expertise.

Examples of codeless programming are Flowbotics Studio

(https://wiki.lynxmotion.com/info/wiki/lynxmotion/view/ses-software/flowbotics/) and Intrinsic

Flowstate (https://www.intrinsic.ai/) to name a few.

Codeless robot programming democratizes the field of robotics by making it more accessible and

easier to use. It leverages visual programming techniques to enable users to create, modify, and

deploy robot behaviors without writing traditional code, thus accelerating development, reducing

errors, and fostering collaboration.

HARTU has adopted this approach to develop the HARTU-APP-MANAGER tool.

1.3 Node-RED vs Behaviour Trees

As said above, a comparative analysis between Node-RED and Behaviour trees was carried out at

the beginning of the project.

Node-RED and BehaviourTrees are both tools used for building and managing logic flows, but they

serve different purposes and have distinct differences in their design, application, and use cases.

Here's a breakdown of the main differences between the two:

Node-RED:

Node-RED is a flow-based development tool for visual programming, mainly used to connect

hardware devices, APIs, and online services. It is commonly used in IoT (Internet of Things)

applications, home automation, and integrating different systems and services.

Node-RED uses a directed graph where nodes represent operations or functions, and edges

represent the flow of data between these nodes. The flow is built using a visual editor where nodes

are dragged and dropped to create the logic flow. Each node performs a specific task and can be

connected to multiple other nodes.

https://wiki.lynxmotion.com/info/wiki/lynxmotion/view/ses-software/flowbotics/
https://www.intrinsic.ai/

D2.4 HARTU-APP-BUILDER Open Tool

 10

Node-RED operates on an event-driven model where nodes react to incoming messages and pass

messages to the next node. The flow is continuous and dynamic, based on events and data streams.

State is often managed within the nodes or through external storage, and flows can be stateless or

stateful depending on the design.

Node-RED is highly flexible, allowing for custom nodes to be created and integrated.

Behaviour Trees:

Behaviour trees are a hierarchical control structure used to define the logic of autonomous agents,

primarily in robotics and game development.

They are used for AI behaviours in games, robotics control systems, and any application requiring

complex decision-making and behaviour modelling.

Behaviour trees are structured hierarchically with nodes representing tasks or behaviours,
connected in a tree structure. There are typically three types of nodes: control flow nodes
(sequence, selector), decorator nodes, and leaf nodes (actions, conditions). The tree starts from a
root node and branches out to child nodes. The execution flows from the root to the leaves, with
control flow nodes determining the order of execution based on conditions and states.

Behaviour trees operate on a tick-based model where each node is ticked periodically, and the
status (success, failure, running) is propagated up the tree. This allows for reactive and adaptive
behaviour. State is managed within the tree structure, with nodes remembering their status
between ticks, which is crucial for complex behaviour modelling. To learn more, visit the page
Introduction to BTs.

Behaviour trees offer flexibility in defining behaviours through combinations of different node
types. They are modular and reusable, making it easy to design and test complex behaviours.
Custom behaviours can be created by defining new types of leaf nodes or decorators, allowing for
specific actions and conditions to be integrated into the tree.

In summary, each tool has its strengths and is designed to address specific types of problems, so the
choice between Node-RED and behaviour trees depends on the particular requirements and context
of the project. Node-RED is best suited for IoT, system integration, and event-driven applications,
while behaviour trees is best for AI behaviours in robotics, offering structured and hierarchical
control over complex decision-making processes.

HARTU has selected Behaviour Trees to implement HARTU-APP-MANAGER, in particular its

implementation using BehaviorTree.CPP 3.8, a C++ library to build Behaviour Trees. The GUI is

inspired and based on GROOT, an advanced open IDE for creating and debugging Behaviour Trees.

2 HARTU-APP-MANAGER: common entry point
Through the HARTU-APP-MANAGER the user selects which functionality wants to access. In both

cases, the user must first select the functionality and the press the START button. The corresponding

GUI (HARTU-APP-CREATOR or HARTU-APP-EXECUTOR) will then appear.

https://www.behaviortree.dev/docs/learn-the-basics/BT_basics

D2.4 HARTU-APP-BUILDER Open Tool

 11

Figure 1. Common access point of the HARTU-APP-MANAGER

3 Robotic application builder: HARTU-APP-BUILDER

3.1 HARTU-APP-BUILDER: Main interface description

The main interface is shown in Figure 2

Figure 2. HARTU-APP-CREATOR GUI

The GUI consists of 3 basic panels:

• On the left side there is an icon bar to access to the simulation tools, manage the BTs and

configure the way BTs are displayed

o Simulation tools

o Management of Trees

o BT Visualization

• In the centre is a palette of components for the creation of the tree. It includes 4 categories:

Action, Condition control, Decorator and SubTree

• On the right is the BT visualizer, where the tree is presented graphically

D2.4 HARTU-APP-BUILDER Open Tool

 12

The red/green icon in the lower left corner indicates if there is an error in the BT definition. At the

top there are 4 additional icons (see Figure 3) for adding custom nodes, loading a tree, saving the

current tree and locking/unlocking BT editing.

Figure 3. From left to right: Icons for adding custom nodes, loading a tree, saving the current tree and locking/unlocking BT

editing

The BT is created by dragging and dropping the components on the palette. If the component is an

action or a subtree, the user must update the values of its parameters.

3.2 Icon bars

3.2.1 Simulation tools

3.2.1.1 Setup Object

It opens the GUI to configure the characteristics that define the visual appearance and some physical

properties (weight and friction) of the object. The first ones are needed for the generation of image

datasets, and the second ones for testing the grasping points.

The description of these interfaces is included in “D2.3 Simulation infrastructure for handling

component training”.

Figure 5. Interface for defining the visual appearance and physical characteristics of parts: Basic and Advanced Mode

3.2.1.2 Train Segmenter

It give access to two different interfaces: one to define scenes and one to define the dataset

characteristics.

The description of these interfaces is included in “D2.3 Simulation infrastructure for handling

component training”.

D2.4 HARTU-APP-BUILDER Open Tool

 13

Figure 4. Interface to define a scene

Figure 5. Interface to define the dataset of images to be
generated

Once the dataset is generated the user call the python script to train the object detection model

(YOLOv5).

3.2.1.3 Define gripper

It displays an interface to select/define the gripper that will be used by the LocalGraspPlanner to

identify the grasping points of a new object:

Figure 6. Interface to configure the gripper for the LocalGraspPlanner

The user can load an existing one of create a new one:

Figure 7. Interfaces to select an existing gripper (left) or define a new one (right)

3.2.1.4 Grasping points

It executes a python script that launches a ROS2 node with the pipeline to estimate the grasping

points (LocalGraspPlanner).

D2.4 HARTU-APP-BUILDER Open Tool

 14

3.2.2 Programming by demonstration

It allows calling two ROS services:

• Perform recording. The data (trajectories) are saved in a file.

• Learning the model. The learned model is also saved in a file.

3.2.3 BT management

The two icons allow loading an existing Tree from the repository or saving the current tree.

3.2.4 BT Visualization

It includes three icons that allow modifying the way the BT are presented in the visualization area:

• Auto Zoom: It adjusts the complete BT in the visualization area

• Layout H/V: as sometimes the BT may grow horizontally or vertically, the user can choose

the way it is presented:

Figure 8. BT arranged horizontally

Figure 9. BT arranged vertically

• Reorder: Reorders all nodes of the BT

Figure 10. BT Original non-ordered BT

Figure 11. BT after reordering

D2.4 HARTU-APP-BUILDER Open Tool

 15

3.3 Palette of components

The interface includes the basic palette available in GROOT with the additional ones developed in

HARTU.

Figure 12. Basic elements of the GROOT pallete

3.3.1 Action

HARTU-APP-CREATOR offers a library of BT nodes for the most common functionalities needed to

build a robotic application.

The description of the parameters of each node are accessible by pressing the right buttom of the

mouse on the corresponding action as in the example for the AcquireSensorData:

D2.4 HARTU-APP-BUILDER Open Tool

 16

Advanced users can create their own actions using BehaviorTree.CPP 3.8

3.3.1.1 AcquireSensorData

Calls to the ROS2 node that implements the acquisition of an image. Currently it is available for

Photoneo and ZEDi.

When the data parameter is set to 1 it is called synchronously and doesn’t return until the image is

available. With the data set to 0 is called asynchronously and returns the control immediately. In

this later case, the image can be read using the GetSensorData function (see section 3.3.1.11).

Figure 13. AcquireSensorData node

3.3.1.2 ChangeFrame

Changes the frame of the camera to that specified in the node.

D2.4 HARTU-APP-BUILDER Open Tool

 17

Figure 14. ChangeFrame node

3.3.1.3 CircularMovement

Calls the ROS2 node that generates a circular movement.

Figure 15. CircularMovement node

3.3.1.4 EstimateCADPoses

Calls the ROS2 node that provides the pose of the segmented objects in the image using their

corresponding CAD model.

Figure 16. EstimateCADPoses node

3.3.1.5 EstimateGPCAD

Calls the ROS2 node that provides the pose of the grasping points on the segmented objects in the

image, when the CAD is available.

D2.4 HARTU-APP-BUILDER Open Tool

 18

Figure 17. EstimateGPCAD node

3.3.1.6 EstimateGPPrimitives

Calls the ROS2 node that provides the pose of the grasping points on the segmented objects in the

image (the corresponding to the primitives), when there is not CAD is available.

Figure 18. EstimateGPPrimitives node

3.3.1.7 EstimatePrimitivesPoses

Calls the ROS2 node that provides the pose of the segmented objects (their corresponding

primitives) in the image when there is not CAD model available.

Figure 19. EstimatePrimitivesPoses node

3.3.1.8 ExecuteLearnedMovement

Executes the learned movements during the learning from demonstration.

D2.4 HARTU-APP-BUILDER Open Tool

 19

Figure 20. ExecuteLearnedMovement node

3.3.1.9 GetCADGraspingPose

Calls the ROS2 node that returns the best grasping points between all candidates in the scene, when

there is CAD model available.

Figure 21. GetCADGraspingPose node

3.3.1.10 GetPrimitiveGraspingPose

Calls the ROS2 node that returns the best grasping points between all candidates in the scene, when

no CAD model available.

Figure 22. GetPrimitiveGraspingPose node

3.3.1.11 GetSensorData

Retrieves the image acquired by the corresponding AcquireSensorData when in the latter the data

parameter is set to 0. In this case AcquireSensorData is called asynchronously and returns the

D2.4 HARTU-APP-BUILDER Open Tool

 20

control immediately, otherwise, with data set to 1 it is called synchronously and doesn’t return until

the image is available.

Figure 23. GetSensorData node

3.3.1.12 LinearMovement

Calls the ROS2 node that generates a linear movement from the current position to the target

position.

Figure 24. LinearMovement node

3.3.1.13 LocateBin

Calls the ROS2 node that provides the location of either the work surface or the bin/container in the

scene where parts can be found.

Figure 25. LocateBin node

3.3.1.14 PathPlanning

Calls the planner selected in MoveIt, to plan the trajectory given the initial and final points.

D2.4 HARTU-APP-BUILDER Open Tool

 21

Figure 26. PathPlanning node

3.3.1.15 PointToPointMovement

Calls the ROS2 node that generates a point-to-point trajectory either in cartesian or joints.

Figure 27. PointToPointMovement node

3.3.1.16 SegmentObjects

Calls the ROS2 node that generates the masks of the segmented objects in the RGB image given the

trained model.

Figure 28. SegmentObjects node

3.3.1.17 SetOutput

Calls the ROS2 driver (ROS2 node) that sets the digital output signal to true of false

D2.4 HARTU-APP-BUILDER Open Tool

 22

Figure 29. SetOutput node

3.3.1.18 SetRobotiqGripper

Calls the RobotiQ gripper ROS2 driver (implementing MODBUS communication) that opens or closes

the tool.

Figure 30. SetRobotiqGripper node

3.3.2 Condition control

The user has at his/her disposal the condition controls that are common in many programming

languages. Details are available at https://www.behaviortree.dev/.

• Fallback

• IfThenElse

• ManualSelector

• Parallel

• ReactiveFallback

• ReactiveSequence

• Sequence

• SequenceStar

• Switch1 to Switch6

• WhileDoElse

A detailed explanation of this controls is available here:

3.3.3 Decorator

Decorators are special types of nodes that modify the behaviour of other nodes. They act as

intermediaries, adding additional control logic to the execution flow of the tree. Decorators can

change the way a node or subtree is executed based on conditions or rules. For instance, the repeat

decorator can be used to execute an action (or subtree) as many times as indicated:

https://www.behaviortree.dev/

D2.4 HARTU-APP-BUILDER Open Tool

 23

Figure 31. Example of use of repeat decorator

Details are available at https://www.behaviortree.dev/.

• BlackboardCheckBool

• BlackboardCheckDouble

• BlackboardCheckInt

• BlackboardCheckString

• Delay

• ForceFailure

• ForceSuccess

• Inverter

• KeepRunningUnitlFailure

• Repeat

• RetryUntilSuccessful

• Timeout

3.3.4 Subtrees

It is very common that a set of actions are repeated in different robotic applications. HARTU-APP-

CREATOR offers the possibility to define then as a subtree that can be then reused. Advanced users

can create their own subtrees.

The subtrees currently available are:

https://www.behaviortree.dev/

D2.4 HARTU-APP-BUILDER Open Tool

 24

3.3.4.1 GraspingPointEstimation

It implements the various actions necessary to select the grasping point of the object that the robot

will try to pick up in a given scene: acquiring the image, segmenting it and estimating the pose of

the grasping point candidates.

Figure 32. GraspingPointEstimation Subtree

3.3.4.2 MovePick

It implements a set of movements to safely approach the pick position(just before activating the

gripper).

Figure 33. MovePick Subtree

3.3.4.3 MovePostPick

It implements a set of movements to safely reverse the movements after the picking operation.

D2.4 HARTU-APP-BUILDER Open Tool

 25

Figure 34. MovePostPick Subtree

3.3.4.4 Pick

It implements the complete picking operations as a combination of MovePick, SetRobotiquGrippper

(or SetOutput) and MovePostPick

Figure 35. Pick Subtree

3.3.4.5 Place

It implements the actions to move to a destination and open the gripper to release the part held by

the robot.

D2.4 HARTU-APP-BUILDER Open Tool

 26

Figure 36. Place Subtree

4 Control of robotic applications: HARTU-APP-CONTROL

4.1 Behaviour trees: workflow overview

Visit the page Introduction to BTs for an explanation on how this workflow works.

4.2 HARTU-APP-CONTROL: Main Interface description

The main interface is shown in Figure 37:

Figure 37. Common interface to visualize the flow of actions (BT nodes)

The GUI consists of 3 basic panels:

https://www.behaviortree.dev/docs/learn-the-basics/BT_basics

D2.4 HARTU-APP-BUILDER Open Tool

 27

• On the left side there is an icon bar to load trees, execute and stop then, as well as the BT

visualization tools (see description in section 3.2.4).

• In the centre is displayed the BT: running nodes (orange), successfully executed nodes

(green) and unsuccessfully execute ones (red)

Figure 38. Colours for the different states of execution of the nodes

• On the right is displayed the RVIZ panel.

4.3 HARTU-APP-CONTROL: Use Case dependent Interface description

In addition to the main interface described above, each application may require a specific UI to

define some parameters, to display application parameters and messages and to manually

command some actions (e.g. stop, resume).

This UI is accessible through the UI window and gives access to the user-defined display, an example

of such a UI is presented in Figure 39.

Figure 39. Interface to be customize for each Use Case

The development of this interface is done using QT.

D2.4 HARTU-APP-BUILDER Open Tool

 28

5 HARTU-APP-MANAGER Deployment
The readme.txt available in the https://gitlabpa.eng.it repository explains how to deploy the

application.

https://gitlabpa.eng.it/

