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Executive Summary 

This document describes the main concepts of HARTU-APP-MANAGER, the tool that HARTU makes 

available to end users and system integrators to create and control robotic applications, thus giving 

rise to two different functionalities: HARTU-APP-CREATOR and HARTU-APP-CONTROL. 

The core of HARTU-APP-MANAGER is based on the concept of behaviors trees and its 

implementation using BehaviorTree.CPP 3.8, a C++ library for building BehaviourTrees. The GUI is 

inspired and based GROOT, an advanced open IDE for creating and debugging BehaviourTrees. 

HARTU-APP-MANAGER is an open tool that will be made accessible through the GITLAB 

infrastructure created by HARTU. 
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1 Introduction 
 

1.1 Objective 

The objective of “Task 2.4 Application development support tool” is to provide a tool that facilitates 

the definition of a robotic application and its control by end users. 

Initially the use of Node-RED was considered, an open programming tool based on Node.js (non-

blocking event-driven model), whose browser-based editor would facilitate the connection of flows 

using the wide range of nodes already available or by creating custom nodes using the available 

editor. Thus, it would be possible to reuse functions, templates or flows. 

However, after an analysis of other alternatives, it was decided to develop HARTU-APP-BUILDER 

based on the concept of Behaviour Trees, in particular the implementation based on 

BehaviorTree.CPP (see section 1.2). 

It uses a similar concept, so it is possible to create the set of Nodes for each of the components 

developed in the project and integrate with ROS2 based functionalities such as global and local 

trajectory planning and controllers.  

By means of the HARTU-APP-MANAGER, system Integrators / end users will create and control the 

application for the 7 use cases defined for the 5 industrial end users. 

IMPORTANT: Although the title of this document refers to HARTU-APP-BUILDER, it is more 

appropriate to name it HARTU-APP-MANAGER, as this software offers two different functionalities: 

• HARTU-APP-CREATOR, used to create and configure the robotic application 

• HARTU-APP-EXECUTOR, used to control and monitor the execution of the robotic 

application. 

1.2 Codeless programming 

Codeless robot programming refers to the development and control of robotic systems using visual, 

intuitive, and user-friendly interfaces rather than traditional text-based coding. This approach aims 

to make robot programming more accessible to non-experts, allowing users to create, modify, and 

deploy robot behaviors and tasks without needing to write complex code. 

The main features of codeless robot programming are the following: 

1. Visual Programming Interfaces: 

Users interact with a graphical user interface (GUI) where they can drag and drop pre-

defined blocks or nodes that represent various actions, conditions, and control structures. 

These blocks can be connected to form a flowchart or diagram that represents the robot’s 

behavior and logic. 

2. Pre-defined Components: 
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Libraries of pre-built components or modules are available, covering common robot actions 

(e.g., moving, picking objects, sensing). Users can easily select and configure these 

components to fit their specific needs. 

3. Simulation and Testing: 

Many codeless programming environments include simulators that allow users to test and 

validate their robot programs in a virtual environment before deploying them to the actual 

robot. This helps in identifying and fixing issues without risking damage to the physical robot. 

4. Interactive Debugging: 

Tools for real-time monitoring and debugging of robot behavior are often integrated, 

allowing users to visualize the execution flow and identify problems interactively. 

5. Cross-platform Compatibility: 

Codeless programming tools often support multiple robot platforms and hardware, 

providing flexibility and reducing the need for platform-specific expertise. 

Examples of codeless programming are Flowbotics Studio 

(https://wiki.lynxmotion.com/info/wiki/lynxmotion/view/ses-software/flowbotics/) and Intrinsic 

Flowstate (https://www.intrinsic.ai/) to name a few. 

Codeless robot programming democratizes the field of robotics by making it more accessible and 

easier to use. It leverages visual programming techniques to enable users to create, modify, and 

deploy robot behaviors without writing traditional code, thus accelerating development, reducing 

errors, and fostering collaboration. 

HARTU has adopted this approach to develop the HARTU-APP-MANAGER tool. 

1.3 Node-RED vs Behaviour Trees 

As said above, a comparative analysis between Node-RED and Behaviour trees was carried out at 

the beginning of the project. 

Node-RED and BehaviourTrees are both tools used for building and managing logic flows, but they 

serve different purposes and have distinct differences in their design, application, and use cases. 

Here's a breakdown of the main differences between the two: 

Node-RED: 

Node-RED is a flow-based development tool for visual programming, mainly used to connect 

hardware devices, APIs, and online services. It is commonly used in IoT (Internet of Things) 

applications, home automation, and integrating different systems and services.  

Node-RED uses a directed graph where nodes represent operations or functions, and edges 

represent the flow of data between these nodes. The flow is built using a visual editor where nodes 

are dragged and dropped to create the logic flow. Each node performs a specific task and can be 

connected to multiple other nodes. 

https://wiki.lynxmotion.com/info/wiki/lynxmotion/view/ses-software/flowbotics/
https://www.intrinsic.ai/
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Node-RED operates on an event-driven model where nodes react to incoming messages and pass 

messages to the next node. The flow is continuous and dynamic, based on events and data streams. 

State is often managed within the nodes or through external storage, and flows can be stateless or 

stateful depending on the design. 

Node-RED is highly flexible, allowing for custom nodes to be created and integrated. 

Behaviour Trees: 

Behaviour trees are a hierarchical control structure used to define the logic of autonomous agents, 

primarily in robotics and game development. 

They are used for AI behaviours in games, robotics control systems, and any application requiring 

complex decision-making and behaviour modelling. 

Behaviour trees are structured hierarchically with nodes representing tasks or behaviours, 
connected in a tree structure. There are typically three types of nodes: control flow nodes 
(sequence, selector), decorator nodes, and leaf nodes (actions, conditions). The tree starts from a 
root node and branches out to child nodes. The execution flows from the root to the leaves, with 
control flow nodes determining the order of execution based on conditions and states. 

Behaviour trees operate on a tick-based model where each node is ticked periodically, and the 
status (success, failure, running) is propagated up the tree. This allows for reactive and adaptive 
behaviour. State is managed within the tree structure, with nodes remembering their status 
between ticks, which is crucial for complex behaviour modelling. To learn more, visit the page 
Introduction to BTs. 

Behaviour trees offer flexibility in defining behaviours through combinations of different node 
types. They are modular and reusable, making it easy to design and test complex behaviours. 
Custom behaviours can be created by defining new types of leaf nodes or decorators, allowing for 
specific actions and conditions to be integrated into the tree. 

In summary, each tool has its strengths and is designed to address specific types of problems, so the 
choice between Node-RED and behaviour trees depends on the particular requirements and context 
of the project. Node-RED is best suited for IoT, system integration, and event-driven applications, 
while behaviour trees is best for AI behaviours in robotics, offering structured and hierarchical 
control over complex decision-making processes. 

HARTU has selected Behaviour Trees to implement HARTU-APP-MANAGER, in particular its 

implementation using BehaviorTree.CPP 3.8, a C++ library to build Behaviour Trees. The GUI is 

inspired and based on GROOT, an advanced open IDE for creating and debugging Behaviour Trees. 

2 HARTU-APP-MANAGER: common entry point 
Through the HARTU-APP-MANAGER the user selects which functionality wants to access. In both 

cases, the user must first select the functionality and the press the START button. The corresponding 

GUI (HARTU-APP-CREATOR or HARTU-APP-EXECUTOR) will then appear. 

https://www.behaviortree.dev/docs/learn-the-basics/BT_basics
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Figure 1. Common access point of the HARTU-APP-MANAGER 

 

3 Robotic application builder: HARTU-APP-BUILDER 

3.1 HARTU-APP-BUILDER: Main interface description 

The main interface is shown in Figure 2 

 
Figure 2. HARTU-APP-CREATOR GUI 

The GUI consists of 3 basic panels: 

• On the left side there is an icon bar to access to the simulation tools, manage the BTs and 

configure the way BTs are displayed 

o Simulation tools 

o Management of Trees 

o BT Visualization 

• In the centre is a palette of components for the creation of the tree. It includes 4 categories: 

Action, Condition control, Decorator and SubTree 

• On the right is the BT visualizer, where the tree is presented graphically 
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The red/green icon in the lower left corner indicates if there is an error in the BT definition. At the 

top there are 4 additional icons (see Figure 3) for adding custom nodes, loading a tree, saving the 

current tree and locking/unlocking BT editing. 

 
Figure 3. From left to right: Icons for adding custom nodes, loading a tree, saving the current tree and locking/unlocking BT 

editing 

The BT is created by dragging and dropping the components on the palette. If the component is an 

action or a subtree, the user must update the values of its parameters. 

3.2 Icon bars 

3.2.1 Simulation tools 

3.2.1.1 Setup Object 

It opens the GUI to configure the characteristics that define the visual appearance and some physical 

properties (weight and friction) of the object. The first ones are needed for the generation of image 

datasets, and the second ones for testing the grasping points. 

The description of these interfaces is included in “D2.3 Simulation infrastructure for handling 

component training”. 

  
Figure 5. Interface for defining the visual appearance and physical characteristics of parts: Basic and Advanced Mode 

 

3.2.1.2 Train Segmenter 

It give access to two different interfaces: one to define scenes and one to define the dataset 

characteristics. 

The description of these interfaces is included in “D2.3 Simulation infrastructure for handling 

component training”. 
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Figure 4. Interface to define a scene 

 
Figure 5. Interface to define the dataset of images to be 
generated 

Once the dataset is generated the user call the python script to train the object detection model 

(YOLOv5). 

3.2.1.3 Define gripper 

It displays an interface to select/define the gripper that will be used by the LocalGraspPlanner to 

identify the grasping points of a new object:  

 
Figure 6. Interface to configure the gripper for the LocalGraspPlanner 

The user can load an existing one of create a new one: 

  
Figure 7. Interfaces to select an existing gripper (left) or define a new one (right) 

3.2.1.4 Grasping points 

It executes a python script that launches a ROS2 node with the pipeline to estimate the grasping 

points (LocalGraspPlanner). 
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3.2.2 Programming by demonstration 

It allows calling two ROS services: 

• Perform recording. The data (trajectories) are saved in a file. 

• Learning the model. The learned model is also saved in a file. 

 

3.2.3 BT management 

The two icons allow loading an existing Tree from the repository or saving the current tree. 

3.2.4 BT Visualization 

It includes three icons that allow modifying the way the BT are presented in the visualization area: 

• Auto Zoom: It adjusts the complete BT in the visualization area 

• Layout H/V: as sometimes the BT may grow horizontally or vertically, the user can choose 

the way it is presented: 

 
Figure 8. BT arranged horizontally 

 
Figure 9. BT arranged vertically 

 

• Reorder: Reorders all nodes of the BT 

 
Figure 10. BT Original non-ordered BT 

 
Figure 11. BT after reordering 
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3.3 Palette of components 

The interface includes the basic palette available in GROOT with the additional ones developed in 

HARTU. 

 
Figure 12. Basic elements of the GROOT pallete 

 

 

3.3.1 Action 

HARTU-APP-CREATOR offers a library of BT nodes for the most common functionalities needed to 

build a robotic application.  

The description of the parameters of each node are accessible by pressing the right buttom of the 

mouse on the corresponding action as in the example for the AcquireSensorData: 
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Advanced users can create their own actions using BehaviorTree.CPP 3.8 

3.3.1.1 AcquireSensorData 

Calls to the ROS2 node that implements the acquisition of an image. Currently it is available for 

Photoneo and ZEDi.  

When the data parameter is set to 1 it is called synchronously and doesn’t return until the image is 

available. With the data set to 0 is called asynchronously and returns the control immediately. In 

this later case, the image can be read using the GetSensorData function (see section 3.3.1.11). 

 
Figure 13. AcquireSensorData node 

3.3.1.2 ChangeFrame 

Changes the frame of the camera to that specified in the node. 
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Figure 14. ChangeFrame node 

3.3.1.3 CircularMovement 

Calls the ROS2 node that generates a circular movement. 

 
Figure 15. CircularMovement node 

3.3.1.4 EstimateCADPoses 

Calls the ROS2 node that provides the pose of the segmented objects in the image using their 

corresponding CAD model. 

 
Figure 16. EstimateCADPoses node 

3.3.1.5 EstimateGPCAD 

Calls the ROS2 node that provides the pose of the grasping points on the segmented objects in the 

image, when the CAD is available. 
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Figure 17. EstimateGPCAD node 

3.3.1.6 EstimateGPPrimitives 

Calls the ROS2 node that provides the pose of the grasping points on the segmented objects in the 

image (the corresponding to the primitives), when there is not CAD is available. 

 
Figure 18. EstimateGPPrimitives node 

3.3.1.7 EstimatePrimitivesPoses 

Calls the ROS2 node that provides the pose of the segmented objects (their corresponding 

primitives) in the image when there is not CAD model available. 

 
Figure 19. EstimatePrimitivesPoses node 

 

3.3.1.8 ExecuteLearnedMovement 

Executes the learned movements during the learning from demonstration.  
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Figure 20. ExecuteLearnedMovement node 

3.3.1.9 GetCADGraspingPose 

Calls the ROS2 node that returns the best grasping points between all candidates in the scene, when 

there is CAD model available. 

 
Figure 21. GetCADGraspingPose node 

3.3.1.10 GetPrimitiveGraspingPose 

Calls the ROS2 node that returns the best grasping points between all candidates in the scene, when 

no CAD model available. 

 
Figure 22. GetPrimitiveGraspingPose node 

3.3.1.11 GetSensorData 

Retrieves the image acquired by the corresponding AcquireSensorData when in the latter the data 

parameter is set to 0. In this case AcquireSensorData is called asynchronously and returns the 
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control immediately, otherwise, with data set to 1 it is called synchronously and doesn’t return until 

the image is available. 

 
Figure 23. GetSensorData node 

3.3.1.12 LinearMovement 

Calls the ROS2 node that generates a linear movement from the current position to the target 

position. 

 
Figure 24. LinearMovement node 

3.3.1.13 LocateBin 

Calls the ROS2 node that provides the location of either the work surface or the bin/container in the 

scene where parts can be found. 

 
Figure 25. LocateBin node 

3.3.1.14 PathPlanning 

Calls the planner selected in MoveIt, to plan the trajectory given the initial and final points. 
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Figure 26. PathPlanning node 

3.3.1.15 PointToPointMovement 

Calls the ROS2 node that generates a point-to-point trajectory either in cartesian or joints. 

 
Figure 27. PointToPointMovement node 

3.3.1.16 SegmentObjects 

Calls the ROS2 node that generates the masks of the segmented objects in the RGB image given the 

trained model. 

 
Figure 28. SegmentObjects node 

3.3.1.17 SetOutput 

Calls the ROS2 driver (ROS2 node) that sets the digital output signal to true of false 
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Figure 29. SetOutput node 

3.3.1.18 SetRobotiqGripper 

Calls the RobotiQ gripper ROS2 driver (implementing MODBUS communication) that opens or closes 

the tool. 

 
Figure 30. SetRobotiqGripper node 

3.3.2 Condition control 

The user has at his/her disposal the condition controls that are common in many programming 

languages. Details are available at https://www.behaviortree.dev/. 

• Fallback 

• IfThenElse 

• ManualSelector 

• Parallel 

• ReactiveFallback 

• ReactiveSequence 

• Sequence 

• SequenceStar 

• Switch1 to Switch6 

• WhileDoElse 

A detailed explanation of this controls is available here:  

3.3.3 Decorator 

Decorators are special types of nodes that modify the behaviour of other nodes. They act as 

intermediaries, adding additional control logic to the execution flow of the tree. Decorators can 

change the way a node or subtree is executed based on conditions or rules. For instance, the repeat 

decorator can be used to execute an action (or subtree) as many times as indicated: 

https://www.behaviortree.dev/
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Figure 31. Example of use of repeat decorator 

Details are available at https://www.behaviortree.dev/. 

• BlackboardCheckBool 

• BlackboardCheckDouble 

• BlackboardCheckInt 

• BlackboardCheckString 

• Delay 

• ForceFailure 

• ForceSuccess 

• Inverter 

• KeepRunningUnitlFailure 

• Repeat 

• RetryUntilSuccessful 

• Timeout 

3.3.4 Subtrees 

It is very common that a set of actions are repeated in different robotic applications. HARTU-APP-

CREATOR offers the possibility to define then as a subtree that can be then reused. Advanced users 

can create their own subtrees. 

The subtrees currently available are: 

https://www.behaviortree.dev/
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3.3.4.1 GraspingPointEstimation 

It implements the various actions necessary to select the grasping point of the object that the robot 

will try to pick up in a given scene: acquiring the image, segmenting it and estimating the pose of 

the grasping point candidates. 

 
Figure 32. GraspingPointEstimation Subtree 

3.3.4.2 MovePick 

It implements a set of movements to safely approach the pick position(just before activating the 

gripper). 

 
Figure 33. MovePick Subtree 

3.3.4.3 MovePostPick 

It implements a set of movements to safely reverse the movements after the picking operation. 
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Figure 34. MovePostPick Subtree 

3.3.4.4 Pick 

It implements the complete picking operations as a combination of MovePick, SetRobotiquGrippper 

(or SetOutput) and MovePostPick  

 
Figure 35. Pick Subtree 

3.3.4.5 Place 

It implements the actions to move to a destination and open the gripper to release the part held by 

the robot. 
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Figure 36. Place Subtree 

 

4 Control of robotic applications: HARTU-APP-CONTROL 
 

4.1 Behaviour trees: workflow overview 

Visit the page Introduction to BTs for an explanation on how this workflow works. 

4.2 HARTU-APP-CONTROL: Main Interface description 

The main interface is shown in Figure 37: 

 
Figure 37. Common interface to visualize the flow of actions (BT nodes) 

The GUI consists of 3 basic panels: 

https://www.behaviortree.dev/docs/learn-the-basics/BT_basics
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• On the left side there is an icon bar to load trees, execute and stop then, as well as the BT 

visualization tools (see description in section 3.2.4). 

• In the centre is displayed the BT: running nodes (orange), successfully executed nodes 

(green) and unsuccessfully execute ones (red) 

 
Figure 38. Colours for the different states of execution of the nodes 

• On the right is displayed the RVIZ panel. 

4.3 HARTU-APP-CONTROL: Use Case dependent Interface description 

In addition to the main interface described above, each application may require a specific UI to 

define some parameters, to display application parameters and messages and to manually 

command some actions (e.g. stop, resume). 

This UI is accessible through the UI window and gives access to the user-defined display, an example 

of such a UI is presented in Figure 39. 

 
Figure 39. Interface to be customize for each Use Case 

The development of this interface is done using QT. 
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5 HARTU-APP-MANAGER Deployment 
The readme.txt available in the https://gitlabpa.eng.it repository explains how to deploy the 

application. 

 

https://gitlabpa.eng.it/

